Academic year 2024-2025 ST Engeener

Tutorial Series N•5

Exercise 1

Consider the following equilibrium:

 $CO_2(g) + H_2(g)$

 $CO(g) + H_2O(g)$

 $\Delta_{\rm r} \, {\rm H} = +41,38 \, {\rm kJ}$

- How does the equilibrium move if:
 - a) $CO_2(g)$ is added
 - b) $H_2O(g)$ is added
 - c) CO(g) is removed
 - d) A catalyst is added
 - e) We raise the temperature
 - f) The volume of the container is reduced at constant temperature

Exercise 2

Consider the following chemical equilibria:

- a. $CO(g) + 2H_2(g) \longrightarrow CH_3OH(g)$
- b. $Ca(OH)_2(s) \leftarrow Ca_{aq}^{2+} + 2OH_{aq}^{-}$
- c. Ni (s) + 4 CO (g) \longrightarrow Ni(CO)₄ (g)
- d. $CO_2(g) + H_2(g)$ \longrightarrow $H_2O(l) + CO(g)$

1. Indicate if the previous equilibria are homogeneous or heterogeneous.

2. Write the expressions for K_C , K_p and those linking K_p to K_C .

Exercise 3

Convert the values of *Kc* to values of *KP* or the values of *KP* to values of *Kc*. (a) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $K_c = 0,50$ at 400 °C (b) $H_2 + I_2 \rightleftharpoons 2HI$ $K_c = 50,2$ at 448 °C (c) $H_2O(l) \rightleftharpoons H_2O(g)$ $K_P = 0,122$ at 50 °C

Exercise 4

We introduced into a vacuum vessel at 500 K; 0,4 moles of CO and 0,2 moles of H_2O , The following equilibrium is obtained:

$$CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$$

1- At equilibrium, 0,199 moles of CO₂ are formed

a- Calculate the constant K_p and deduce KC

b- Calculate the free enthalpy at 500 K. Is the reaction spontaneous at this temperature

2- Which way does the equilibrium move if:

a-the total pressure is increased

b-the quantity of carbon monoxide is reduced

Exercise 5

We introduce 1,15 g of solid N_2O_4 into a container of 1 litter, which is heated to 27 °C, this compound vaporises completely and dissociates in part according to the reaction:

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

When equilibrium is established, the total pressure is 4000 KPa calculate:

1- the number of moles of each of the two gases in the equilibrium mixture

2- the equilibrium constant K_P of the equilibrium

3- the change in the free enthalpy of formation of N_2O_4 (g), given that the free enthalpy of the reaction is constant

4- calculate the change in the standard entropy of the reaction. Can you predict its sign?

Data: molar masse (g/mol) : N (14), O (16) $\Delta H^{\circ}_{f}(N_{2}O_{4})g = 12.5 \text{ KJ/mol}, \Delta H^{\circ}_{f}(NO_{2})g = 33.4 \text{ KJ/mol}, \Delta G^{\circ}_{f}(NO_{2})g = 52.3 \text{ KJ/mol}$