Final exam of thermodynamics

Course question

Define the principles of thermodynamics

Exercise 1

I-

Consider the following reaction: $CH_4(g) + NH_3(g) \longrightarrow HCN(g) + 3H_2(g)$ 1- calculate the enthalpy of the reaction at 298 K. Give the nature of the reaction

2- calculate the heat of this reaction at constant volume

3- we heat to 393 K, calculate the enthalpy of the reaction at this temperature Data :

Compounds	NH ₃ (g)	CH ₄ (g)	HCN	H ₂ (g)
$\Delta \mathbf{H} \circ_{\mathbf{f}} (\mathrm{KJ.mol}^{-1})$	-46.2	-74.9	130	•
$\mathbf{C}_{\mathbf{p}}$ (J.mol ⁻¹ K ⁻¹)	34.30	35.57	77.84	28.80

II- the heat of combustion of C_2H_4 (g) is -1387.4 KJ and knowing that the heat of formation of CO_2 and H_2O are respectively: -392.5 KJ/mol and -285.8 KJ/mol.

1- write the combustion reaction of C_2H_4

2- deduce the standard enthalpy of formation of $C_2H_4(g)$

Exercise 2

Given an ideal **diatomic** gas in an initial state A(P_A, T_A, V_A), this gas undergoes the following successive reversible transformations:

- isochoric heating to state B
- adiabatic expansion to state C
- isobaric cooling to its initial state A

1- complete the following table

	А	В	С
P (atm)	1	3.5	
V (L)	2		
T (K)	300		

2- represent the transformation cycle on the Clapeyron diagram (P,V)

- what does the area of the cycle in the diagram represent?

3- calculate the work W, the heat Q, the internal energy change ΔU , the enthalpy change ΔH , and the entropy change ΔS for each transformation.

Data: R=0.082 L.atm.mol⁻¹.K⁻¹ = 8.314J.mol⁻¹.K⁻¹