Tutorial Nº 1 ### Exercise1 Match each description below with the following microscopic pictures. More than one picture may fit each description. A picture may be used more than once or not used at all. - a. a gaseous compound - **b.** a mixture of two gaseous elements - c. a solid element - **d.** a mixture of a gaseous element and a gaseous compound ### **Exercise 2** - 1) What is the difference between homogeneous and heterogeneous matter? Classify each of the following as homogeneous or heterogeneous. - a. a door - **b.** the air you breathe - **c.** a cup of coffee (black) - **d.** the water you drink - e. salsa - 2) Classify each of the following as a mixture or a pure substance. - a. water **f.** uranium **b.** blood g. leather c. the oceans **h.** table salt (NaCl) - **d.** iron - e. steal - 3) Of the pure substances, which are elements and which are compounds? ### Exercise 3 Classify following as physical or chemical changes. | 1- The melting of ice | 5- Melt chocolate | |--|--| | 2- Dissolution of table salt in water | 6- The bleaching of a pair of jeans by bleach | | 3- Toast a slice of bread | 7- Sugar caramelization | | 4- Cutting a sheet of cardboard. | | ### **Exercise 4** What amount (moles) are represented by each of these samples? **a.** 150.0 g Fe₂O₃ **c.** 1.5×10^{16} molecules of BF₃ **b.** 10.0 mg NO₂ d. 15 mL of H_2SO_4 d= 1,83 g/cm³ #### Given: $M(Fe_2O_3)=159,69 \text{ g/mol}, M(NO_2)=46,01 \text{ g/mol}, M(H_2SO_4)=98 \text{ g/mol}.$ #### Exercise 5 What number of atoms of nitrogen are present in 5.00 g of each of the following? | a. Glycine < <c2h5o2n>></c2h5o2n> | c. Calcium nitrate < <ca(no<sub>3)₂>></ca(no<sub> | |---|--| | b. Magnesium nitride << Mg ₃ N ₂ >> | d. Dinitrogen tetroxide << N ₂ O ₄ >> | ### Exercise 6 For 1mL of water calculate **a-** The corresponding mass of water **c-** The number of moles of hydrogen **e-** The number of water' molecules **g-**The number of oxygen's atoms **b-** The number of moles of water d- The number of moles of oxygène **f-** The number of hydrogen's atoms **Data**: ρ (H₂O) = 1 g/cm³; M (H₂O) = 18 g/mol; le nombre d'Avogadro = 6.023 10^{23} mole. ## Exercise 7 Balance the following reactions: $$Fe_2O_3(s) + CO(g)$$ $$C_2H_5OH(l) + O_2(g)$$ $$NH_3(g) + O_2(g)$$ $$Fe(s) + CO_2(g)$$ $$CO_2(g) + H_2O(l)$$ $$NO(g) + H_2O(g)$$ ### **Exercise 8** Aluminum chloride, AlCl₃, is used as a catalyst in various industrial reactions. It is prepared from hydrogen chloride gas and aluminum metal shavings. $$Al(s) + HCl(g)$$ AlCl₃(s) +H₂(g) - Suppose a reaction vessel contains 0.15 mol Al and 0.35 mol HCl. How many moles of AlCl₃ can be prepared from this mixture? ### Exercise 9 Potassium superoxide, KO₂, is used in rebreathing gas masks to generate oxygen. $$KO_2(s) + H_2O(l)$$ \longrightarrow $KOH(s) + O_2(g)$ If a reaction vessel contains 0.25 mol KO₂ and 0.15 mol H₂O, what is the limiting reactant? How many moles of oxygen can be produced? - What is the remaining quantity of H₂O? ### Exercise 10 - 1. How many grams of NiCl₂*6H₂O must be dissolved in a 0.25 L solution to create 1 M Ni(II) solution ? (MW NiCl₂*6H₂O = 237.64 g/mol) ? - **2.** You want to create a 0.2 M solution of Ni²⁺ in a 25 mL volumetric flask using the 1 M solution prepared above. How would you go about making this solution? - **3.** What is the concentration in ppm of Ni in the 0.2 M solution you just prepared? ### Exercise 11 In the label of a commercial solution flask of nitric acid HNO₃, we find: mass percentage= 68.0 %, Density: d=1.41 and Molar mass: M=63.0 g/mol. - **1.** Demonstrate that the molar concentration of nitric acid in this commercial solution is 15 mol.L⁻¹. - **2.** Determine the volume V_0 (mL) of commercial solution that needs to be taken for the preparation of V = 500 mL of nitric acid solution of concentration C = 1.0 mol/L. - 3. Name this process # Exercise 12 - 1. Find the Normality of the solution containing 5.3 g/L of Na₂CO₃ (106 g/mol) - **2.** Determine the Normality of a solution prepared by dissolving 75 g of solid Ba(NO₃)₂ (261.32 g/mol) into 374 g of water. - 3. The mass of an aqueous solution that contains 11.7~g of NaCl (58.5~g/mol) is 551.7~g. Calculate the molality of the solution. ## Exercise 13 Calculate the percent composition by mass of the following compounds that are important starting materials for synthetic polymers: - 1. C₃H₄O₂ (acrylic acid, from which acrylic plastics are made). - 2. C₄H₆O₂ (methyl acrylate, from which Plexiglas is made). - 3. C₃H₃N (acrylonitrile, from which Orlon is made).