
Tutorial Nº 1

Exercise1

Match each description below with the following microscopic pictures. More than one picture may fit each description. A picture may be used more than once or not used at all.

- a. a gaseous compound
- **b.** a mixture of two gaseous elements
- c. a solid element
- **d.** a mixture of a gaseous element and a gaseous compound

Exercise 2

- 1) What is the difference between homogeneous and heterogeneous matter? Classify each of the following as homogeneous or heterogeneous.
- a. a door
- **b.** the air you breathe
- **c.** a cup of coffee (black)
- **d.** the water you drink
- e. salsa
 - 2) Classify each of the following as a mixture or a pure substance.
- a. water

f. uranium

b. blood

g. leather

c. the oceans

h. table salt (NaCl)

- **d.** iron
- e. steal
 - 3) Of the pure substances, which are elements and which are compounds?

Exercise 3

Classify following as physical or chemical changes.

1- The melting of ice	5- Melt chocolate
2- Dissolution of table salt in water	6- The bleaching of a pair of jeans by bleach
3- Toast a slice of bread	7- Sugar caramelization
4- Cutting a sheet of cardboard.	

Exercise 4

What amount (moles) are represented by each of these samples?

a. 150.0 g Fe₂O₃

c. 1.5×10^{16} molecules of BF₃

b. 10.0 mg NO₂

d. 15 mL of H_2SO_4 d= 1,83 g/cm³

Given:

 $M(Fe_2O_3)=159,69 \text{ g/mol}, M(NO_2)=46,01 \text{ g/mol}, M(H_2SO_4)=98 \text{ g/mol}.$

Exercise 5

What number of atoms of nitrogen are present in 5.00 g of each of the following?

a. Glycine < <c2h5o2n>></c2h5o2n>	c. Calcium nitrate < <ca(no<sub>3)₂>></ca(no<sub>
b. Magnesium nitride << Mg ₃ N ₂ >>	d. Dinitrogen tetroxide << N ₂ O ₄ >>

Exercise 6

For 1mL of water calculate

a- The corresponding mass of water

c- The number of moles of hydrogen

e- The number of water' molecules

g-The number of oxygen's atoms

b- The number of moles of water

d- The number of moles of oxygène

f- The number of hydrogen's atoms

Data: ρ (H₂O) = 1 g/cm³; M (H₂O) = 18 g/mol; le nombre d'Avogadro = 6.023 10^{23} mole.

Exercise 7

Balance the following reactions:

$$Fe_2O_3(s) + CO(g)$$

$$C_2H_5OH(l) + O_2(g)$$

$$NH_3(g) + O_2(g)$$

$$Fe(s) + CO_2(g)$$

$$CO_2(g) + H_2O(l)$$

$$NO(g) + H_2O(g)$$

Exercise 8

Aluminum chloride, AlCl₃, is used as a catalyst in various industrial reactions. It is prepared from hydrogen chloride gas and aluminum metal shavings.

$$Al(s) + HCl(g)$$
 AlCl₃(s) +H₂(g)

- Suppose a reaction vessel contains 0.15 mol Al and 0.35 mol HCl. How many moles of AlCl₃ can be prepared from this mixture?

Exercise 9

Potassium superoxide, KO₂, is used in rebreathing gas masks to generate oxygen.

$$KO_2(s) + H_2O(l)$$
 \longrightarrow $KOH(s) + O_2(g)$

If a reaction vessel contains 0.25 mol KO₂ and 0.15 mol H₂O, what is the limiting reactant? How many moles of oxygen can be produced?

- What is the remaining quantity of H₂O?

Exercise 10

- 1. How many grams of NiCl₂*6H₂O must be dissolved in a 0.25 L solution to create 1 M Ni(II) solution ? (MW NiCl₂*6H₂O = 237.64 g/mol) ?
- **2.** You want to create a 0.2 M solution of Ni²⁺ in a 25 mL volumetric flask using the 1 M solution prepared above. How would you go about making this solution?
- **3.** What is the concentration in ppm of Ni in the 0.2 M solution you just prepared?

Exercise 11

In the label of a commercial solution flask of nitric acid HNO₃, we find: mass percentage= 68.0 %, Density: d=1.41 and Molar mass: M=63.0 g/mol.

- **1.** Demonstrate that the molar concentration of nitric acid in this commercial solution is 15 mol.L⁻¹.
- **2.** Determine the volume V_0 (mL) of commercial solution that needs to be taken for the preparation of V = 500 mL of nitric acid solution of concentration C = 1.0 mol/L.
- 3. Name this process

Exercise 12

- 1. Find the Normality of the solution containing 5.3 g/L of Na₂CO₃ (106 g/mol)
- **2.** Determine the Normality of a solution prepared by dissolving 75 g of solid Ba(NO₃)₂ (261.32 g/mol) into 374 g of water.
- 3. The mass of an aqueous solution that contains 11.7~g of NaCl (58.5~g/mol) is 551.7~g. Calculate the molality of the solution.

Exercise 13

Calculate the percent composition by mass of the following compounds that are important starting materials for synthetic polymers:

- 1. C₃H₄O₂ (acrylic acid, from which acrylic plastics are made).
- 2. C₄H₆O₂ (methyl acrylate, from which Plexiglas is made).
- 3. C₃H₃N (acrylonitrile, from which Orlon is made).