Engagements pédagogiques, Année universitaire 2025./2026., (Rostane Brahim	Engagements pédagogiques. Année université	aire 2025./2026 (Rosta	ne Brahim)
--	--	-------------------------	-------------

Engagements pédagogiques, Année universitaire 2025./2026 (Rostane Brahim)

INTITULE DU COURS* Aérodynamique et turbomachines

CODE* MR772 CREDIT* 1 Coefficient*1

VOLUME HORAIRE HEBDOMADAIRE*: 1.5 H

DUREE SEMESTRIELLE TOTALE DU COURS :14 semaine

FILIERE/SPECIALITE* Génie Mécanique option Energie renouvelable en mécanique

LANGUE DU COURS*Française

CHARGE DE COURS ; Rostane Brahim

OBJECTIF GENERAL DU COURS*

Voir les différentes machines à turbine de type hydrauliques et thermiques et leur fonctionnement.

OBJECTIFS D'APPRENTISSAGE*

- *Apprendre l'aérodynamique des aubes et des ailettes.
- *Etudier les différentes turbomachines qui se trouvent dans l'industrie.
- *Voir la combinaison entre les turbomachines thermiques et les énergies renouvelables pour la production d'électricité.

DESCRIPTIF ET STRUCTURE*

Chapitre 1 généralité et classification des turbomachines (2semaine)

classification des turbomachines selon la direction de l'écoulement, le type d'écoulement et mode de transfert d'énergie

Chapitre2: turbomachines hydraulique (3semaine)

Pompe centrifuge, turbine kaplan, turbine Pelton, Turbine Francis et éolienne.

Chapitre 3 Turbomachines Thermique. (4semaine)

Turbine à gaz, Turbine à vapeur, turboréacteur.

Chapitre 4 Turbomachines à fluide compressible (3semaine)

Compresseur et ventilateur axial, compresseur et ventilateur centrifuge.

Chapitre 5 Aérodynamique des aubes et des ailettes. (2semaine)

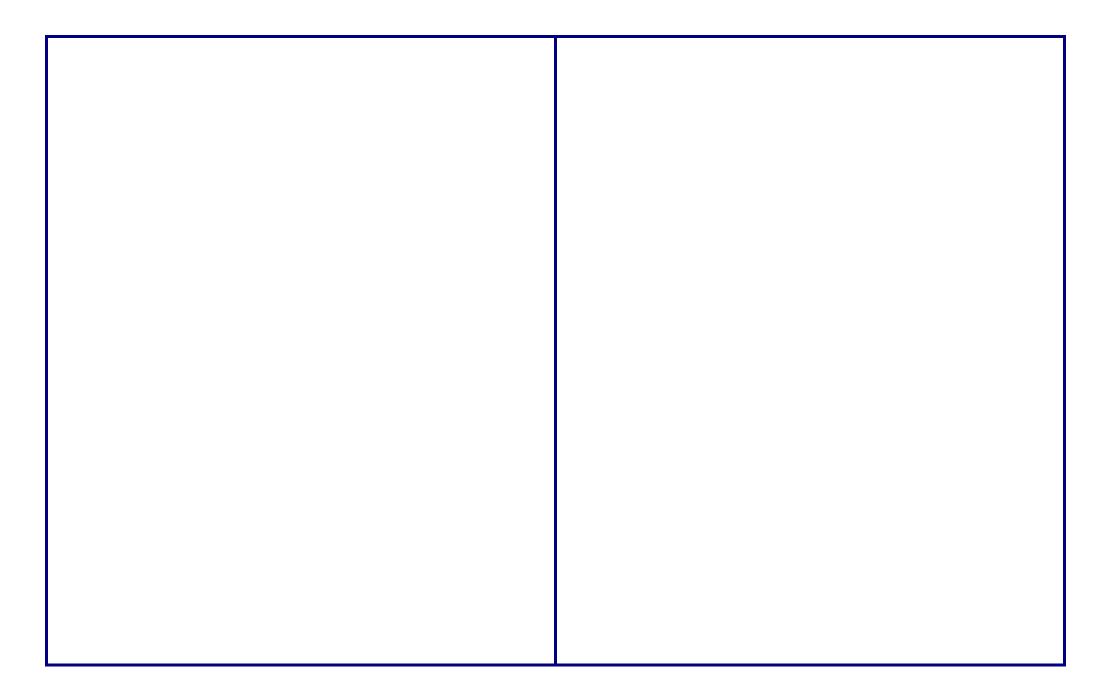
PRE-REQUIS*

Mécanique des fluides, Thermodynamique.

RESSOURCES BIBLIOGRAPHIQUES*

- 1. Théorie de Turbomachines, M.REGGIO, J. Trépanier.
- 2. TURBOMACHINES ENERGIES HYDRAULIQUE ET EOLIENNE, Mathieu Jenny.

ORGANISATION ET PRINCIPE DE FONCTIONNEMENT DU COURS*


Les cours se déroulent dans Moodle (https://elearn.univ-tlemcen.dz/mod/googlemeet/view.php?id=64475)

EVALUATION*

Exposé 40%. Examen: 60%

CONTACT*

r_brahim75@yahoo.fr

