UNIVERSITY ABOU BAKR BELKAID - TLEMCEN

Faculty of technology Mechanical Engineering Department

IGM 2024/2025

Tutorial N°2

Ex	ercise 1:					
Ch	oose the right a	nnswer(s):				
1	said tl	nat everything in th	e universe	e is made up of	tiny particles called atoms	•
A.	Democritus	B. Dalton	C. 0	Copernicus	D. Aristotle	
2- `	What did JJ Tł	nomson discover?				
	A. Electrons	B. Nucleus		C. Proton	D. Neutrons	
3-N	Milliken said th	at the electron has:				
	A. No charge aB. A charge ar	and a large mass and a large mass		charge and a sma positive charge		
4-F	Ruthorford said	that the electrons of	circle the	nucleus with a f	fixed orbit.	
	A. True		B. Fa	lse		
5-(Chadwick disco	vered the electron.				
	A. True		B. F	alse		
6-F	Rutherford's ex	periment allowed u	s to concl	ude that:		
A.	The atom is em	pty; B.	Atomic ma	ass is distributed	throughout the whole atom	;
C .	The center of the	ne atom has a positiv	e charge;	D. The center	of the atom is empty	
7-]	The electron of	an aluminium atom	is differe	nt from the elec	ctron of a zinc atom.	
	A. True		B.]	False		
8-7	The centre of th	e atom carries a pos	sitive char	ege.		
	A. True		B.]	False		
9-7	The number of j	protons of an atom	is called:			
	Atomic mass Mass number		B . Protons D . Atomic			
10-	Isotopes of an	element have:				
	A. The same n	umber of protons and	d neutrons			
	B. The same nu	The same number of neutrons and a different number of protons.				
	C. The same nu	mber of protons and	a differen	t mass number.		
	D. The same nu	mber of protons and	a differen	t number of neu	trons.	

Exercise 2:

1. Give, in table form, the mass, proton, neutron and electron numbers of the following elements and ions:

$$^{40}_{19}K; \ ^{3}_{1}H; \ ^{16}_{8}O; \ ^{58}_{26}Fe; \ ^{24}_{12}Mg; \ ^{76}_{34}Se; \ ^{18}_{8}O^{-2}; \ ^{25}_{12}Mg^{+2}; \ ^{2}_{1}H; \ ^{56}_{26}Fe^{+2}$$

2. List the different isotopes.

Exercise 3:

Complete the following table:

Symbol	Number of Protons in Nucleus	Number of Neutrons in Nucleus	Number of Electrons	Net Charge
²³⁸ 92U	_	_	_	_
_	20	20	_	2+
_	23	28	20	_
⁸⁹ 39 Y	_	_	_	_
_	35	44	36	_
	15	16	_	3-

Exercice 4:

If you know that the mass of the potassium atom $^{40}_{19}K$ is equal to the sum of the masses of the all its particles calculate:

- 1. The mass of the nucleus
- 2. The mass of the electron cloud
- **3.** The mass of the potassium atom
- **4.** What can we deduce?

Exercice 5:

- **A-** Given that the mass number (atomic mass) of gold is **197**, calculate the number of gold atoms in a 2.5 g piece of 18-carat gold jewelry.
- **B-** The total mass of all the electrons in a gold atom is approximately 7.20×10^{-29} kg. Deduce it atomic number.

Exercice 6:

- **A-** In an experiment it was found that the total charge on an oil drop was 5.93 x10⁻¹⁸ C. How many negative charges does the drop contain?
- **B-** Consider an atom whose nucleus contains 16 neutrons and has a total charge: $q = +2,56.10^{-18}$ C
 - 1. what is the atomic number of nucleus?

- 2. what is its nucleons number?
- **3.** how many electrons are in the electron cloud?
- C- The same questions as A for an ion whose charge is $q_{ion} = +4.8 \cdot 10^{-19}$ C. its nucleus contains 28 neutrons and its charge $q = +3.84 \cdot 10^{-19}$ C.

Exercise 7:

The nucleus of an entity has a mass $m = 5.51.10^{-26} \, \text{Kg}$ and carries the electric charge $q = 2.56.10^{-18} \, \text{C}$. The electron cloud contains 18 electrons.

- 1. Determine the atomic number and mass number of the nucleus.
- **2.** Is it an atom or an ion?
- **3.** What is the charge, in coulomb, of this entity?

Exercices 8:

- **A-** Neon has three naturally occurring isotopes: ²⁰Ne (isotopic mass = 19.9924 amu, abundance = 90.48%), ²¹Ne (isotopic mass = 20.9938 amu, abundance = 0.27%) and ²²Ne (isotopic mass = 21.9914 amu, abundance = 9.25%)
 - Calculate the atomic mass of neon.
- **B-** Chlorine has two naturally occurring isotopes, ³⁵Cl (isotopic mass 34.9689 amu) and ³⁷Cl (isotopic mass 36.9659 amu). If chlorine has an atomic mass of 35.4527 amu.
 - -What is the percent abundance of each isotope?

Exercise 9:

Magnesium has three naturally occurring isotopes:

- **Magnesium-24** (mass = 23.985 amu, abundance = 78.99%)
- **Magnesium-25** (mass = 24.986 amu, abundance = 10.00%)
- **Magnesium-26** (mass = 25.983 amu, abundance = 11.01%)
- **1.** Explain what an **isotope** is, using magnesium as an example.
- 2. Calculate the **relative atomic mass** of magnesium.
- **3.** If a sample of magnesium contains 1.00 mol of atoms, how many atoms of magnesium-25 are present?

Exercise 10:

A- Obtain the mass defect (in amu) and binding energy (in MeV) for the ${}^{58}_{28}Ni$ nucleus. What is the binding energy (in MeV) per nucleon?

<u>Data</u>: atomic mass of ${}^{58}_{28}Ni = 57.93534$ amu.

- **B-** Consider the following two atoms $^{235}_{92}U$ and $^{140}_{54}Xe$
 - -Compare the stability of these two atoms.

Data $m_v = 234,9942 u$ and $m_{xe} = 139,9252 u$

Exercice 11:

Natural iron ${}^{58}_{26}Fe$ consists of four stable isotopes (n°1 to n°4) whose natural abundances are shown below:

Isotopes	⁵⁴ ₂₆ Fe	⁵⁶ ₂₆ Fe	⁵⁷ ₂₆ Fe	⁵⁸ ₂₆ Fe
Atomic mass	53,9399	55,9349	56,9350	57,9330
Abundance %	5,84	91,75	2,12	0,28

- 1. Give the composition of each isotopes.
- 2. Find the natural average mass of iron.
- Calculate the mass defect in (u) of the nucleus ⁵⁶₂₆Fe.
 Calculate the binding energy per nucleon of ⁵⁶₂₆Fe in J and MeV.

	Charge (C)	Mass (amu)	Mass (g)
Electron	-1.602×10^{-19}	0.00055	0.00091×10^{-24}
Proton	$+1.602 \times 10^{-19}$	1.00727	1.67262×10^{-24}
Neutron	0	1.00866	1.67493×10^{-24}