Chapitre 4 Outils de contrôle de flux Les fonctions en Python

Pour les étudiants en génie civil - M1 RIB

Dr. Hachimi Dahhaoui Université de Tlemcen

Mercredi 22 octobre 2025

Rappel de la séance précédente

✓ On a vu:

Les décisions :

if, elif, else

Les répétitions :

for, while

Le contrôle:

break, continue, pass

Aujourd'hui : on apprend à organiser le code et éviter la répétition grâce aux fonctions.

Tu veux calculer la surface d'une pièce : 4×3 Puis celle du salon, de la cuisine, etc.

🔁 Tu répètes la même formule encore et encore 😩

En Python, une fonction fait ce travail à ta place!

Une fonction, c'est quoi ?

Une fonction = une petite machine qui fait une tâche précise pour toi 🍪

- Tu lui donnes des données (entrées)
- Elle te renvoie un résultat (sortie)
- **Exemple**:

"Je donne la longueur et la largeur → elle me renvoie la surface."

Syntaxe d'une fonction

- © def = "définir une fonction"
- Les parenthèses contiennent les données à traiter.

```
python

def nom_de_fonction(paramètres):
    # instructions à exécuter
    return résultat
```

S Premier exemple

```
def dire_bonjour():
    print("Bonjour à tous !")

dire_bonjour()
```

Qu'est-ce qui s'affiche?

Pourquoi utiliser une fonction?

Sans fonction:

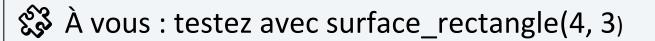
```
python

print("Bonjour")
print("Bonjour")
print("Bonjour")
```

Avec fonction:

```
def dire_bonjour():
    print("Bonjour")

dire_bonjour()
```


Exemple du quotidien

python Opier le code

```
def surface_rectangle(L, 1):
    surface = L * 1
    return surface
```


Explication visuelle

Élément	Signification
def	crée la fonction
L, l	entrées (paramètres)
return	renvoie le résultat
surface_rectangle(4,3)	appel de la fonction

Comme une calculatrice que tu fabriques toi-même

Exemple génie civil

```
python

def volume_beton(L, 1, h):
    volume = L * 1 * h
    return volume

print(volume_beton(5, 4, 0.15))
```

🕸 Lisez le code ci-dessous :

```
Copier le code
python
def volume_beton(L, 1, h):
    return L * 1 * h
```

● Dites-moi :

Quels sont les paramètres ?

Que fait le return?

Que donne volume_beton(2, 3, 0.5)?

Valeurs par défaut

```
python

def volume_beton(L, 1, h=0.15):
    return L * 1 * h
```

Si on oublie d'indiquer l'épaisseur, Python prend 0.15 m par défaut.

🗱 À vous : testez :

```
python

print(volume_beton(4, 3))
print(volume_beton(4, 3, 0.2))
```

Arguments nommés

```
def masse_acier(nb_barres, longueur, masse_lin):
    return nb_barres * longueur * masse_lin

masse_acier(nb_barres=10, longueur=6, masse_lin=0.888)
```

On peut nommer les paramètres pour plus de clarté.

Que va afficher ce programme ?

```
python
                                                                                        Copier le code
def carre(x):
    return x * x
print(carre(2) + carre(3))
```

Devinez le résultat avant de lancer le code.

Réponse : 13

Application génie civil

```
python

def masse_acier(nb, L, m):
    return nb * L * m

print(masse_acier(10, 6, 0.888))
```

→ Résultat : 53.28 kg

Discussion

🗱 Quelle différence entre :

```
Copier le code
python
print(masse_acier(10, 6, 0.888))
et
                                                                                         Copier le code
python
m = masse_acier(10, 6, 0.888)
print(m)
```

□ La première affiche directement, la seconde enregistre le résultat avant de l'afficher.

Activité

Créez une fonction volume_poteau(h, section)

qui calcule et renvoie le volume.

Testez avec h=3 et section=0.25

Les petites fonctions (lambda)

```
python

carre = lambda x: x * x
print(carre(5))
```

 \mathfrak{P} lambda = mini-fonction rapide

Exemple concret:

```
python

conversion = lambda cm: cm / 100
print(conversion(150))
```

→ Résultat : 1.5

Bon code vs mauvais code

X Mauvais:

```
python

def f(x, y): return x*y
```

✓ Bon:

```
def surface_mur(hauteur, largeur):

"""Calcule la surface d'un mur en m²."""

return hauteur * largeur
```

Cas pratique complet

```
def volume_total():
    v1 = volume_beton(4, 3, 0.15)
    v2 = volume_beton(6, 2.5, 0.2)
    total = v1 + v2
    print("Volume total =", total, "m³")
volume_total()
```

💸 À vous : testez et modifiez les dimensions.

Tableau récapitulatif

Élément	Rôle
def	crée la fonction
return	renvoie le résultat
valeur par défaut	simplifie l'appel
lambda	fonction rapide
"""docstring"""	explique la fonction

Erreurs fréquentes

- Oublier les : après def
- Mauvaise indentation
- 🗥 Oublier return
- Appeler la fonction sans ()

Mini quiz collectif

Que fait ce code ?

```
Copier le code
python
def somme(a, b=2):
    return a + b
print(somme(3))
print(somme(3, 5))
```

Résultats : 5 et 8

Mini quiz collectif

Que fait ce code?

```
Copier le code
python
def somme(a, b=2):
    return a + b
print(somme(3))
print(somme(3, 5))
```

Résultats : 5 et 8

Merci! Des questions?

Contact: hachimi.dahhaoui@univ-tlemcen.dz

Fin du Chapitre 1

" Une fonction, c'est une idée que tu transformes en outil. Elle te permet d'être plus rapide, plus clair et plus organisé dans ton code.

Un bon ingénieur automatise ses calculs!

À très bientôt pour la suite!