University of Tlemcen
Faculty of technology
Science and technology Department

Tutorial Series N°3

Exercise 1

1-Determine the wavelength of radiation:

a/ Visible frequency $v_1 = 500$ TH,

b/ infrared Frequency $v_2 = 1$ THz,

 c/γ frequency $v_3 = 500$ EHz

- **2-**Calculate, in joules and electronvolts, the energies of the photons corresponding to the above frequencies.
- **3-**Compare the order of magnitude of the energies of γ and visible photons. Conclusion.
- **4-**The yellow line in the spectrum of a sodium vapour lamp has a frequency of 5,08.10¹⁴s⁻¹. Calculate: The wavelength of the line and the associated wave number
- **5-**Calculate the wavelengths of the traffic lights, assuming that they emit the frequencies: green $(5,75.10^{14}\text{Hz})$; orange $(5,15.10^{14}\text{Hz})$ and red $(4,27.10^{14}\text{Hz})$.

6-What is the wavelength of a radio station transmitting at 98,4MHz?

Data: $c=3.10^8 \text{m.s}^{-1}$; $1EHz=10^{18}Hz$; $1THz=10^{12}Hz$; $h=6.025.10^{-34}J.s$; $1eV=1,602.10^{-19}J.$

EXERCISE 2

Applying the Bohr model to the hydrogen atom, calculate:

1-the energy required to move the electron from the ground state to the 3rd excited state.

2-the frequency of the emitted radiation when the electron transitions from the 3^{rd} excited state to the 2^{nd} excited state.

3-the wavelength required to ionize the electron from the 3rd excited state.

Exercise 3

The spectrum of hydrogen can be broken down into several series. We will confine ourselves here to the first three series by: Lyman, Balmer and Paschen.

- 1-What is the general expression for the wavelength of a light line?
- 2- The lines in each series are framed by two lines of wavelength λ_1 and λ_{lim} respectively.

What do these two lines correspond to?

3- Calculate λ_1 and λ_{lim} for these 3 first series.

Data : $\mathbf{R}_{\mathbf{H}} = 1,096 \ 10^7 \ \mathrm{m}^{-1}$

Exercise 4

One of the lines of the Paschen series in the emission spectrum of hydrogen atom has a wavelength = 18750 Å

To which electron transition does this line correspond?

DATA: $E_1 = -13.6 \text{ EV}$; $h = 6.62 \cdot 10^{-34} \text{ J.s.}$, $1 \text{ EV} = 1.6 \cdot 10^{-19} \text{ J.}$

Exercise 5

For the hydrogen atom, the energy for the electron in the ground state is -13.6ev

1-What is the smallest energy it must absorb to reach the first excited state?

2-the wavelength of line in Balmer series for the hydrogen emission spectrum is 486.18 nm.

a-in which rang of the electromagnetic spectrum is this series located?

b-which transition does this line correspond to?

Data: $h = 6.62 \ 10^{-34} \ J.s$; $R_{H} = 1.1 \ 10^{7} \ m^{-1}$

EXERCISE 6

A caesium photoelectric cell is successively illuminated by two radiations of frequencies v_1 = 42857.10¹⁰s⁻¹ and v_2 =55556.10¹⁰s⁻¹. The extraction energy of an electron from this metal is E_0 =3.10⁻¹⁹J.

- **1-** Calculate the threshold frequency v_0 .
- **2-** When there is a photoelectric effect?
- **3-** If there is a photoelectric effect, calculate the maximum speed of the electrons stripped from the metal.
- **4-** Calculate the stopping potential in this case.

Data: $m_e = 9, 1.10^{-31} \text{Kg}$; $h = 6.025.10^{-34} \text{J.s}$; $c = 3.10^8 \text{m.s}^{-1}$.

Exercise 7

1-Give the definition of a hydrogen like atom.

2-A hydrogen like atom is experimentally created from a lithium gas (Z=3) subjected to light radiation. What is the hydrogen like atom obtained?

a-Calculate the energy of the first excitation for this ion.

b-Deduce the corresponding wavelength.

c-Calculate the ionisation energy of this atom.

d-Calculate the wavelength corresponding to this transition.

e-To which area of the electromagnetic spectrum do these two wavelengths belong?

Data: h=6.62 10^{-34} J.s R_H= $1.097 \ 10^7 \text{m}^{-1}$ C=3 10^8m/s E₀= - 13.6 eV 1e.v=1.602 10^{-19} J

EXERCISE 8

Consider the hydrogen like atom Be^{3+} (Z=4). The shortest wavelength line in its spectrum is at 57,3Å.

- 1) What transition does it correspond to?,
- 2) Calculate the corresponding energy.
- 3) Bohr's theory can be used to calculate the energy of the first ionisation of beryllium?

EXERCISE 9

1-When the electron of the helium atom is at the n=1 level, its first ionisation energy is 54,4eV. What is the energy of the fundamental level?

2-A helium atom is in an excited state. One of its electrons is then at the energy level equal to -13,6 eV. What is the wavelength of the radiation emitted when this electron falls back to the fundamental level?

 $1e.v=1.602\ 10^{-19}J$

Exercise 10

<u>A/1</u>- Calculate the De Broglie wavelength associated with a proton travelling at speed 1.0 x 10^5 m/s. m_p = 1.67 x 10^{-27} kg.

2. A rifle bullet weighs 5g. Calculate the De Broglie wavelength associated, given that it travels through the air at 1930 km.h⁻¹. Conclude.

<u>B/</u>1- What is the error in the velocity of the electron in the hydrogen atom if we know its position r (order of the Bohr radius) to within 0.5%? Conclusion? Similarly, what error do you get in the speed of a 30,000 kg lorry travelling at 72 km/h if you know its position to within 1 mm? Conclusion? We give the speed of the electron on the first Bohr orbit $v = 2,189.10^6$ m/s