الجمهورية الجزائرية الديم قراطية الشعبية وزارة التعليم العالى و البحث العلمي

ك إلى قال المسالي ق الاجتماعية

قسم عليم النفسس

أستاذة المقياس :د. عشاشرة أسماء

محاضرات في مقياس الاحصاء الاستدلالي

السنة الثانية ليسانس أورطوفونيا

المحاضرة 9: التوزيع الاعتدالي أو الطبيعي للبيانات

مقدمة:

تعتبر المقاييس التي تم النطرق اليها في الاحصاء الوصفي و المتمثلة في مقاييس النزعة المركزية ، مقاييس النسبة بالإضافة الى التمثيلات البيانية كالمدرج التكراري ، المضلع التكراري و الدائرة النسبية كوسائل يلجا اليها الباحث لوصف التوزيعات و لكنها لا تزوده بمعلومات حول اذا كانت هذه التوزيعات اعتدالية او طبيعية و دالة لذلك سوف نتطرق فيما يأتي الى التوزيع الطبيعي أو الاعتدالي للبيانات .

1. التوزيع الطبيعي للبيانات:

يعتبر التوزيع الطبيعي أو الاعتدالي للبيانات من أهم التوزيعات المستخدمة في مجال الدراسات la courbe الاحصائية و يسمى التمثيل البياني الذي يمثل هذا التوزيع باسم المنحنى المعتدل Judd, C-M; Normal curve باللغة الانجليزية به الفرنسية أو ما يسمى باللغة الانجليزية به Mc Clelland;Ryan,C-S; Muller,D et Y Zerbyt,V, 2010, p. 50; المحيطي، م-ع، 2013).

اكتشف كل من العالمين Lapalace و Gauss خصائص و فوائد المنحنى المعتدل الذي أصبح ليستخدم منذ ذلك الوقت في التعرف على طبيعة توزيع البيانات و أطلق عليه اسم منحنى Lapalace ليستخدم منذ ذلك الوقت في التعرف على طبيعة توزيع البيانات و أطلق عليه اسم منحنى La palacian or و Gaussian or للغة الفرنسية Gaussian Or باللغة الانجليزية .

2. أنواع المنحنيات:

1.2. المنحنى المعتدل:

يكون المنحنى معتدلا عندما يتخذ شكل جرس أو ناقوس مقلوب له قيمة واحدة ، يمتد طرفاه الى ما لا نهاية و يقتربان من القاعدة التي تمثل محور السينات أو محور (\times) الذي بدوره يمثل قيم المتغير العشوائي المتصل (\times) (عبد المجيد ، م-س; المحيطي ، م-ع، 2013).

- المنوال يساوي الوسيط و يساوي المتوسط الحسابي (M=Md=Mo).
 - ﴿ التوزيع متناظر حول المتوسط الحسابي
- المنحنى نقطتين للانحناء تبعد عن المتوسط ب $\infty \mp$. (د. بوحفص, ع-ك، 2011، صفحة للمنحنى نقطتين للانحناء تبعد عن المتوسط ب

2.2 المنحنى موجب الالتواء:

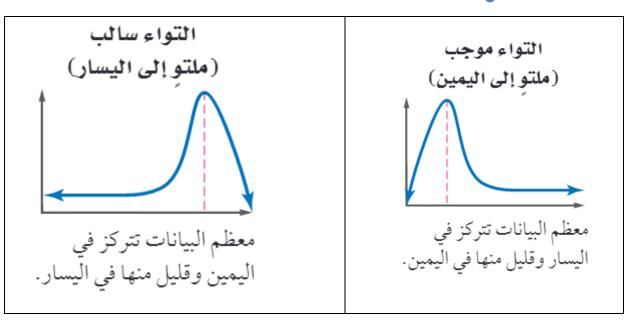
و هو الشكل الذي تأخذ فيه الفئات الكبرى تكرارات أقل و تكون جهة التواء المنحني إلى الشمال .

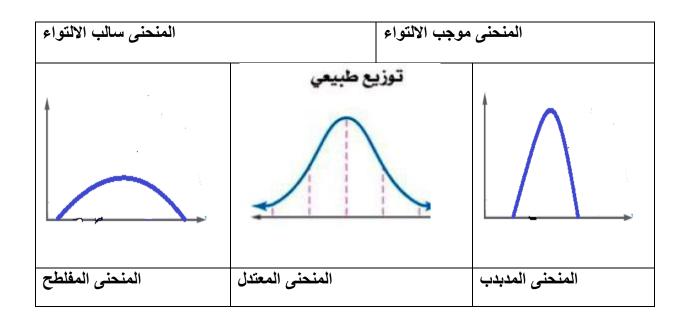
3.2. المنحنى سالب الالتواء:

و هو الشكل الذي تأخذ فيه الفئات الصغرى تكرارات أكثر و تكون جهة التواء المنحني إلى اليمين.

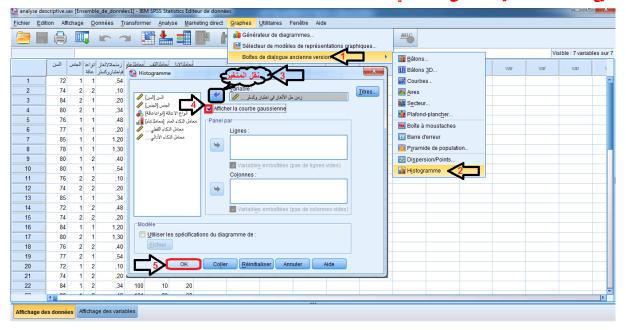
4.2. المنحنى المديدب:

و هو الشكل الذي تأخذ فيه فئات وسطى قليلة تكرارات عالية, بينما تأخذ الفئات السابقة و اللاحقة تكرارات ضعيفة جدا.


يتميز هذا النوع من المنحنيات بقاعدة ضيقة و ارتفاع كبير.


5.2. المنحنى المفلطح:

و هو الشكل الذي تكون تكرارات أغلب الفئات ضعيفة, ما عدا تكرارات الفئات الوسطى و التي تكراراتها أكبر بقليل من تكرارات بقية الفئات.


يتميز هذا النوع من المنحنيات بقاعدة عريضة جدا و بارتفاع ضعيف كذلك

الجدول 1: يمثل أنواع المنحنيات

3. توزيع البيانات عن طريق البرنامج الاحصائي SPSS:

Pigure 1 المراحل من 1 الى 5 لمنحنى توزيع البيانات عن طريق البرنامج الاحصائي 7 (DANCEY, C-P; REIDY, J traduction de SPSS المراحل من 1 الى 5 لمنحنى توزيع البيانات عن طريق البرنامج الاحصائي 6 (DANCEY, C-P; REIDY, J traduction de SPSS)

خلاصة:

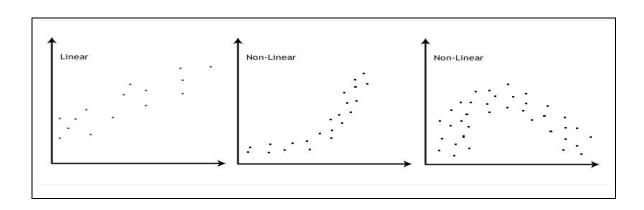
تم التركيز في المحاضرة التالية على التوزيع الطبيعي للبيانات مقارنة بالتوزيعات الاخرى لما له من اهمية في العلوم الاجتماعية أما المنحنيات الاخرى خاصة الملتوية فقد تم التعريج عليها فقط.

المحاضرة 10: الارتباط الباراميترى

_معامل ارتباط بيرسون _

1-تعریف:

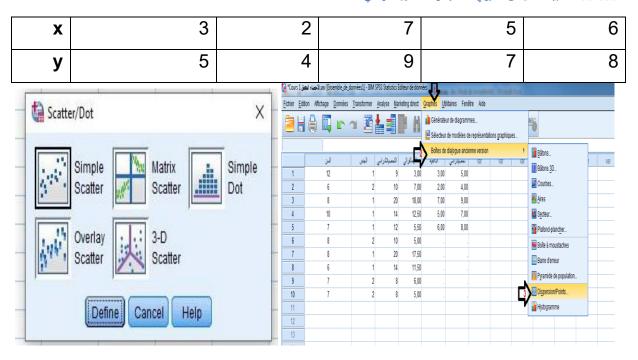
معامل الارتباط بيرسون (Coefficient de corrélation de Pearson) يعرف على أنه

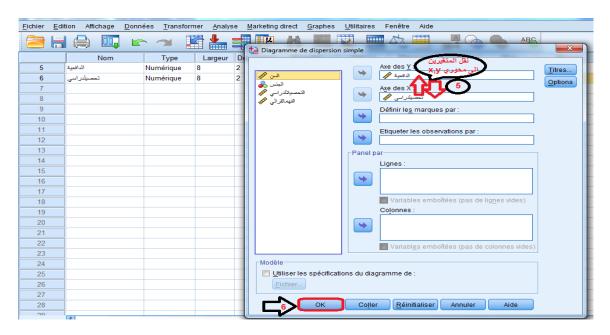

أسلوب إحصائي برمتري يستخدم للتعرف على طبيعة و قوة العلاقة بين متغيرين كميين (x)و (y) ومن أهم اخصائصه:

-أن يكون المتغيرين كميين

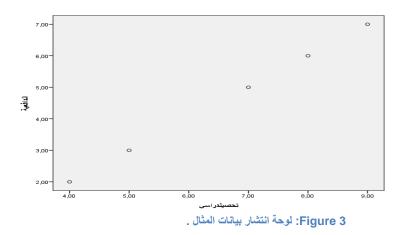
-أن تكون العلاقة بينهما خطية بمعنى أن كل زيادة في المتغير (x) تصحبها زيادة في المتغير (y) أو أن كل تناقص في المتغير (x) يتبعه تناقص في المتغير (x) ، أو ان الزيادة في المتغير (y) يصحبه تناقص في المتغير (y) أو العكس التناقص في المتغير (x) يصاحبه الزيادة في المتغير (y) -أن يكون التوزيع طبيعي لدرجات المتغيرين. (مجمد علام , ا ، 2012)

2- العلاقة الخطية بين المتغيرين:


للتأكد من أن العلاقة خطية بين المتغيرين نقوم برسم لوحة الانتشار (diagramme de dispersion) و ما يسمى باللغة الانجليزية (scatter diagram) حيث تمثل هذه اللوحة المسافة الموجودة بين المحورين الممثلين لدرجات المتغيرين (x) و (y) ، و تشكل سحابة من النقاط بعد ربط درجات كل من المتغيرين (x) و (y) . فاذا حصلنا على سحابة على شكل خط مستقيم ذو اتجاه واحد نقول بان العلاقة بين المتغيرين خطية أما اذا جاء توزع النقاط عشوائيا و كانت السحابة كثيفة فهذا يعني أن العلاقة بين كل من (x) و (y) غير خطية ، و هذا يعنى بعدم وجود علاقة بين المتغيرين أو ان العلاقة ضعيفة.



علاقة خطية	علاقة غير خطية	علاقة غير خطية
		h. 5.


مثال:

تحديد طبيعة و قوة الارتباط بين كل من المتغيرين التاليين: الدافعية (x) و التحصيل الدراسي(y). Tableau الدراسي (x) و التحصيل الدراسي.

SPSS طريقة استخراج لوحة الانتشار عن طريق SPSS

من خلال قراءة لوحة الانتشار (الشكل 23) نستنتج أن العلاقة خطية بين كل من المتغيرين: الدافعية و التحصيل الدراسي.

3- حساب معامل الارتباط:

لنفترض ان باحث اراد أن يعرف اذا كانت هناك علاقة بين الرضا عن العمل و مردودية الانتاج في

4 Figure: نتائج كل من المتغيرين الرضا عن العمل و مردودية الانتاج.

1.3. حساب معامل الارتباط عن طريق SPSS:

- طبيعة العلاقة:

للبحث عن طبيعة العلاقة خطية او غير خطية نتبع المراحل التي ذكرناها قبل و الموضحة في الشكل . 22

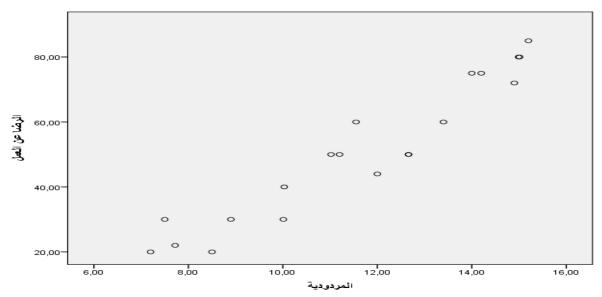


Figure 5: لوحة الانتشار بين مردودية الانتاج و الرضا عن العمل.

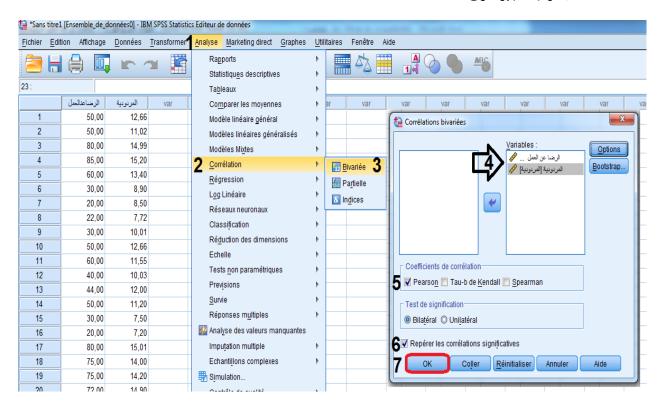
من خلال الشكل 25 نلاحظ أن هناك علاقة خطية بين المتغيرين المردودية(x) و(y) الرضاعن العمل.

- طبيعة التوزيع:

- نبحث عن طبيعة توزيع البيانات كما ذكرنا في المحاضرة السابقة .

Tableau 2: اختبار Shapiro-wilk لتبيين طبيعة توزيع البيانات

Tests de normalité


		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Statistique	ddl	Signification	Statistique	ddl	Signification
ل عن الرضا	الع	,136	20	,200*	,928	20	,142
المردودية		,110	20	,200*	,928	20	,144

^{*.} Il s'agit d'une borne inférieure de la signification réelle.

a. Correction de signification de Lilliefors

- نلاحظ أن قيمتي 50,05 (0.14 p) للاختبار الاحصائي Shapiro-Wilk هذا ما يدل على أن النتائج غير دالة احصائيا و بالتالي توزيع كلا المتغيرين طبيعي.

معامل ارتباط بیرسون:

6 Figure : مراحل حساب معامل الارتباط لبيرسون عن طريق SPSS.

Tableau 3: نتائج معامل ارتباط لبيرسون عن طريق SPSS.

Corrélations					
		العمل عن الرضا	المردودية		
العمل عن الرضا	Corrélation de Pearson	1	,956 ^{**}		
	Sig. (bilatérale)		,000		
	N	20	20		
المردودية	Corrélation de Pearson	,956 ^{**}	1		
	Sig. (bilatérale)	,000			
	N	20	20		

^{**.} La corrélation est significative au niveau 0.01 (bilatéral).

من خلال قراءة الجدول نلاحظ ان قيمة 0.01, 0>(0.001) ، نستنتج من ذلك ان النتيجة دالة احصائيا عند مستوى الدلالة 0.01 و درجة الحرية (DDL=18) بمعنى هناك علاقة ارتباطية بين كل من الرضا عن العمل و مردودية الانتاج في مصنع الزنك.

2.3. قوة معامل الارتباط:

تتراوح قيمة معامل الارتباط بين -1 و 1 مرورا بالصفر .

انطلاقا من هذا التخطيط يمكن استنتاج الحالات التي يمكن ان تأخذها قيم معامل الارتباط:

4 Tableau : تفسير قوة ارتباط معامل بيرسون

تفسیر r	قیمة r
علاقة موجبة تامة	r= 1
علاقة سالبة تامة	r= -1
علاقة منعدمة	r=0
علاقة موجبة أو سالبة ضعيفة	r<0.50 + أو –)
علاقة موجبة أو سالبة متوسطة	(- أو +) r€(0.80-0.50) (+ أو
علاقة موجبة أو سالبة قوية	r>0.80 (+ أو –)

المحاضرة 11: الارتباط اللا براميتري - معامل الارتباط الرتبي-

Le coefficient de corrélation de Rang

1.تعريفه:

يسمى كذلك باللغة الفرنسية Rho de Spearman ، يستخدم لدراسة الارتباط في حالة البيانات الكيفية الرتبية حيث يستعمل الباحث رتبا تصاعدية أو تنازلية عوضا عن القيم الكمية لمتغيرات الدراسة.

اذا كان ترتيب المتغير المستقل تصاعدي و ترتيب المتغير التابع كذلك نقول أن الارتباط بين المتغيرين موجب أي علاقة طردية أما اذا كان ترتيب المتغير المستقل تصاعدي و ترتيب المتغير التابع تنازلي فنقول أن الارتباط بين المتغيرين سالب أي أن العلاقة عكسية بين المتغيرين.

2. حساب معامل الارتباط الرتبي عن طريق SPSS:

مثال:

يبين الجدول التالي ترتيب طلبة علم النفس على أساس الدرجات المحصل عليها في مادتي الاحصاء و اضطرابات التعلم:

n	1	2	3	4	5
الرتبة في RX مادة الاحصاء	5	4	3	2	1
الرتبة في RY مادة اضطرابات التعلم	4	5	3	2	1

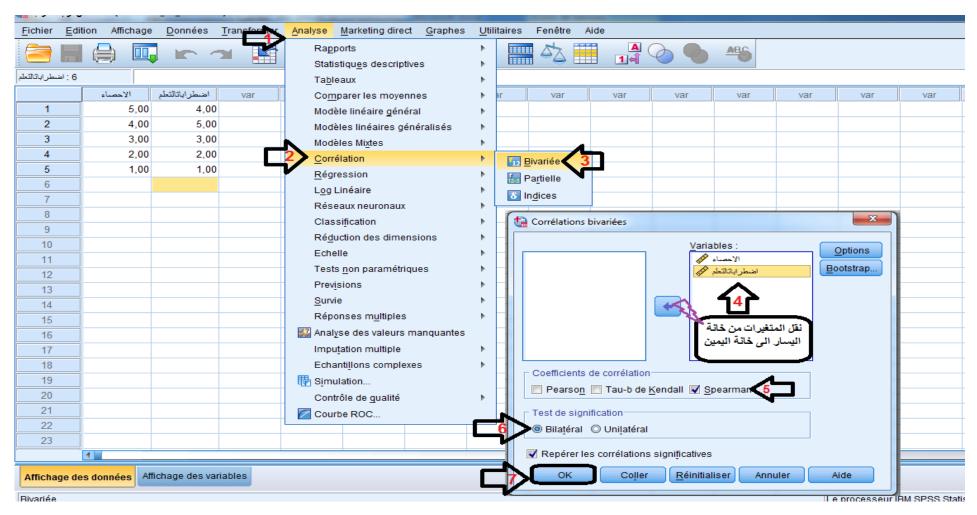


Figure 7: مراحل حساب معامل الارتباط لسبيرمان عن طريق .Figure 7

Tableau 5:نتائج معامل ارتباط الرتبTableau 5

Corrélations

			الإحصاء	اضطرابات
				التعلم
Rho de Spearman	-	Coefficient de corrélation	1,000	,900 [*]
	الاحصاء	Sig. (bilatérale)		,037
		N	5	5
		Coefficient de corrélation	,900*	1,000
	اضطر اباتالتعلم	Sig. (bilatérale)	,037	
		N	5	5

^{*.} La corrélation est significative au niveau 0,05 (bilatéral).

تفسر النتائج بنفس الطريقة التي يفسر بها معامل ارتباط بيرسون.