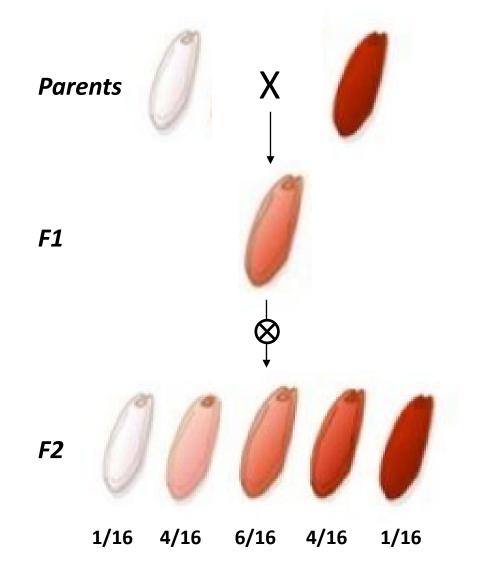
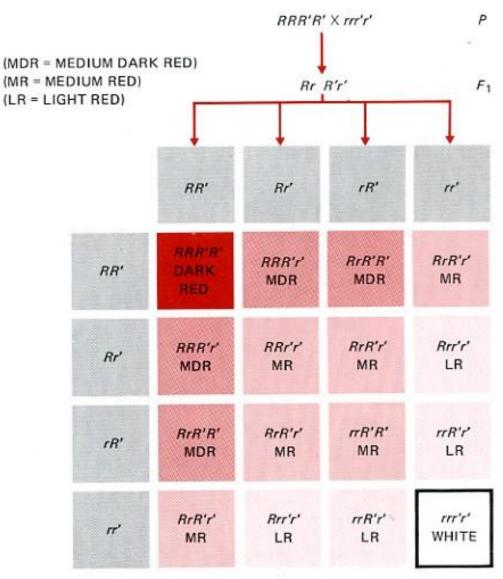
Génétique quantitative


Introduction

- Caractères quantitatifs: quantifiables
 - Continus (biométriques): mesurables (par des instruments). Valeurs = fractions (chiffres après la virgule)
 - Ex: température, poids, distance
 - **Discontinus (ou discrets):** dénombrements, comptages. Valeurs = entiers uniquement
 - Ex: nombre d'épis/plante, nombre de graines/épi, nombre de ramifications

Introduction

- La variation continue des caractères quantitative est due à deux raisons:
 - 1. L'action simultanée de plusieurs gènes
 - 2. L'effet de facteurs non génétiques (environnement ...)


Démonstration de la variation continue

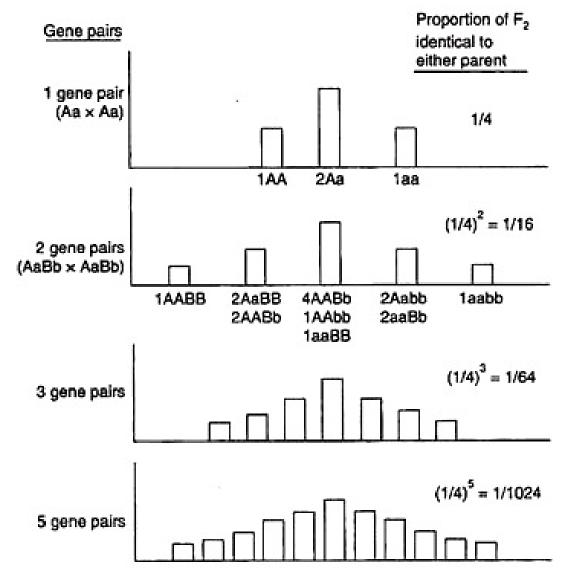
Expérimentation de Nelson-Ehle sur la couleur du grain de blé, 1908

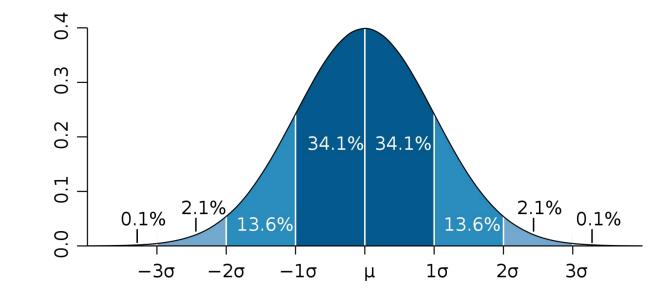
Démonstration de la variation continue

- La couleur est contrôlée par deux gènes bialléliques
- Absence de dominance
- Les allèles qui donnent la couleur rouge, R et R', possèdent un effet cumulatif
- C'est le nombre des allèles R et R`
 qui détermine le phénotype

Démonstration de la variation continue

- Le nombre de phenotypes augmente proportionnellement avec le nombre de gènes
- Pour *n* gènes, on aura en F₂ 3ⁿ génotypes et 2*n*+1
 phénotypes
- Mais la distinction entre eux devient de plus en plus difficile
- Si on ajoute à ça les effets de l'environnement, et les autres effets génétiques (dominance et épistasie), on ne pourra plus décerner les différentes classes phénotypiques
- La variation devient continue




Fig. 4.2 Graphs showing relation of polygenes with F_2 phenotypes.

Introduction

La plupart des caractères quantitatifs suivent une distribution normale

Propriétés de la distribution normale:

- La courbe est symétrique autour de la moyenne
- Elle est complètement déterminée par la moyenne (μ) et la variance (σ^2)

Les effets génétiques et environnementales

- la valeur phénotypique d'un caractère est la somme des effets génétiques, des effets de l'environnement et des effets d'interaction entre eux.
 - *P:* valeur phénotypique
 - G: valeur génotypique

- P = G + E + GxE
- *E:* déviation due à l'environnement (tout facteur non génétique)
- GxE: interaction génotype environnement
- Le génotype confère un certain valeur à l'individu et l'environnement cause une déviation de ce dernier vers une direction ou une autre

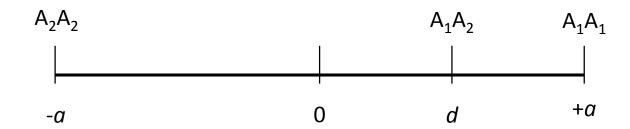
Rendement de 3 variétés de blé au USA

Année	Variété			
	Roughrider	Seward	Agassiz	
1986	30.18	35.22	29.93	
1987	40.19	45.68	37.49	
1988	14.55	16.19	17.89	
1989	38.81	41.90	38.12	
1991	37.99	44.73	34.90	
1992	29.36	30.87	26.15	
1993	36.67	39.63	30.74	
1994	26.27	33.52	25.07	
1995	33.45	41.01	33.71	

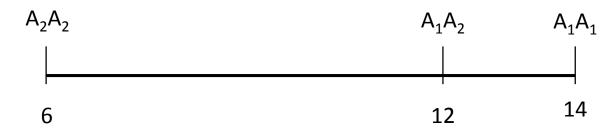
Types d'action des gènes

1. Effet additif (A):

- C'est l'effet moyen d'un allèle
- Chaque gène/allèle additionnel augmente l'expression du caractère par des incrément égaux
- Si chaque allèle augmente l'expression du caractère par 1 unité, alors:
 - aabb = 0, Aabb = 1, AABb = 3, AABB = 4


Types d'action des gènes

1. Les effets d'interaction


- Dominance(D): interaction entre allèles d'un même locus.
 - C'est la déviation de l'additivité qui fait que l'hétérozygote se ressemble à un parent plus que l'autre
 - Trois types: dominance incomplète, dominance complète, superdominance
- Epistasie (/): interaction entre allèles de différents loci

La dominance

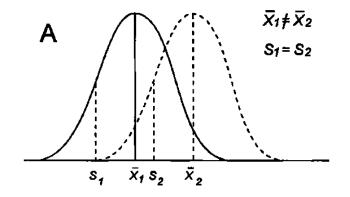
- A₁ est l'allèle qui augmente la valeur du caractère
- La valeur 0 est la valeur moyenne entre les deux homozygotes
- La valeur de l'héterozygote, d, dépend du degrés de dominance:
 - Pas de dominance: *d* = 0
 - Si A_1 dominant sur A_2 : d > 0
 - Si A_2 dominant sur A_1 : d < 0
 - Si la dominance est complète: d = +a ou -a
 - S'il y a superdominance: d > +a ou d < -a
 - Le degrés de dominance = d/a

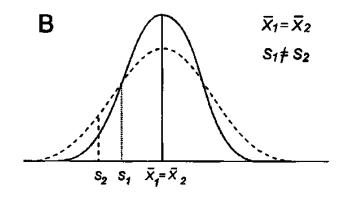
Exemple

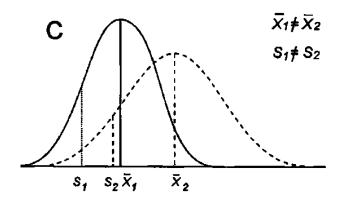
> Calculez le degrés de dominance

Types d'action des gènes

La valeur génétique d'un caractère est le résultat de trois types d'action de gènes: additivité, dominance et épistasie


$$G = A + D + E$$


Les questions traitées par la génétique quantitative


- Mesurer les effets génétiques et environnementales sur le phénotype
- Combien de gènes influence le caractère?
- Quelle sont les types et la force d'action de ces gènes?
- Comment réagit le caractère à la sélection?

Paramètres statistiques d'un caractère quantitatif

- Les caractères quantitatifs sont décrits en utilisant des paramètres statistiques
 - La moyenne: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - La variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$
 - L'écartype: $s = \sqrt{s^2}$ (la même unité que la moyenne)

Paramètres statistiques d'un caractère quantitatif

- Quelles sont les observations qu'on peut tirer de ces données?
 - La moyenne de F₁ est approximativement intermédiaire entre les moyennes des deux parents
 - La moyenne de F₂ ≈ moyenne de F₁, mais F₂ est plus variable que F₁
 - P₁, P₂ et F₁ sont entièrement homogène, donc toute la variance associée à ces populations est due à l'effet de l'environnement

Exemple: Longueur de l'épi chez le maïs

Génération	Moyenne (cm)	Ecartype (cm)	
Parent 1	16.8	0.816	
Parent 2	6.63	1.887	
F ₁	12.12	1.519	
F ₂	12.89	2.252	

Les composantes de la variance

- L'étude de la variance d'un caractère permet de mesurer la contribution de chaque facteur
- Premier niveau de décomposition de la variance

$$V_P = V_G + V_E + V_{GE}$$

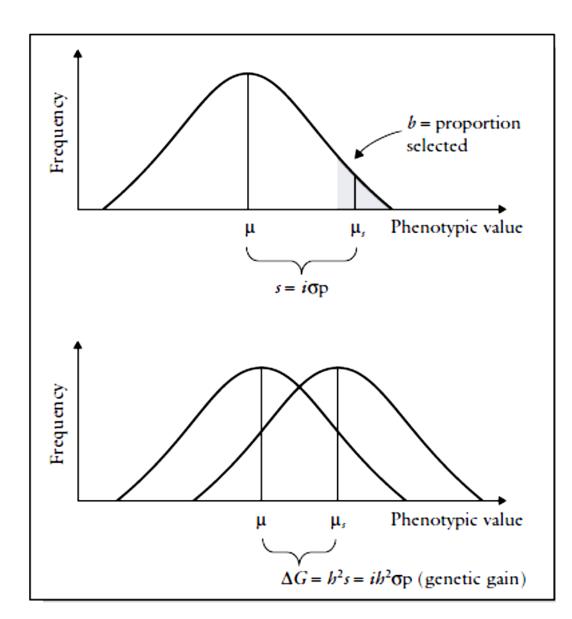
Deuxième niveau de décomposition de la variance

$$V_P = V_A + V_D + V_I + V_E + V_{GE}$$

- V_P: variance phénotypique totale
- V_G: variance génotypique
- V_F: variance due à l'environnement
- V_{GE}: variance due à l'interaction GxE
- V_A: variance additive
- V_D: variance de dominance
- V_I: variance d'interactions épistatiques

Les composantes de la variance

- Comment estimer les composantes de la variance?
- Plan de croisement + dispositif expérimental + analyses statistiques
- Ex:
 - VP1 = E; VP2 = E; VF1 = E
 - VF2 = 1/2A + 1/4D + E
 - VB1 = 1/4A + 1/4D + E
 - VB2 = 1/4A + 1/4D + E
 - VB1 + VB2 = 1/2A + 1/2D + 2E


Les composantes de la variance

 L'étude des composantes de la variance permet de définir les stratégies d'amélioration du caractère en question

Exemples:

- Si la variance due à l'environnement est grande, le caractère devra être amélioré en optimisant les conditions de culture par exemple
- Si la variance additive est importante on devra sélectionner les descendants supérieurs
- Si la variance de dominance est importante on devra développer des hybrids

- Amélioration génétique: Sélectionner les meilleures plantes pour obtenir une meilleure descendance durant la génération suivante
- Ceci est possible quand V_G > V_P
- Les caractères quantitatifs sont difficiles à améliorer à cause de l'influence de l'environnement
- Le degrés de ressemblance entre les parents et les descendants est déterminé par l'effet moyen des gènes.....
 C'est la fraction transmissible ou héritable
- Héritabilité = proportion héritable de la variation phénotypique observée

Héritabilité au sens large

$$H^2 = V_G/V_P$$

Héritabilité au sens strict

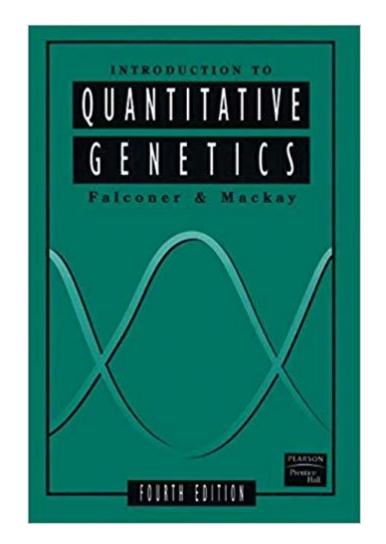
$$h^2 = V_A/V_P$$

- L'héritabilité est spécifique à la population et à l'environnement étudié
- Utilité:
 - Savoir si un caractère peut être amélioré génétiquement
 - Déterminer la stratégie de sélection la plus efficace
 - Prédire le gain génétique

• Exemple: Calculez H^2 et h^2

	P1	P2	F1	F2	BC1	BC2
Moyenne	20.5	40.2	28.9	32.1	25.2	35.4
Variance	10.1	13.2	7	52.3	35.1	56.5

•
$$VF2 = 1/2A + 1/4D + E$$


•
$$VB1 = 1/4A + 1/4D + E$$

•
$$VB2 = 1/4A + 1/4D + E$$

•
$$VB1 + VB2 = 1/2A + 1/2D + 2E$$

- Basée sur le même principe que chez les plantes: ressemblance entre les apparentés
- La différence: plan de croisement et populations utilisé + le plan d'essai

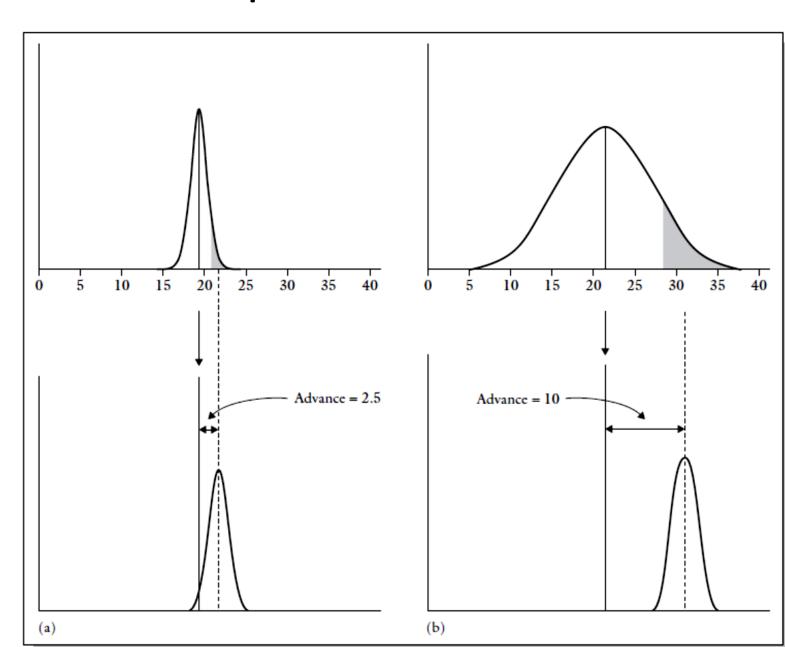
Relatives	Covariance* ·	Regression (b) or correlation (t)
Offspring and one parent	$\frac{1}{2}V_A$	$b = \frac{1}{2}h^2$
Offspring and mid-parent	$\frac{1}{2}V_{\Lambda}$	$b = h^2$
Half sibs	$\frac{1}{4}V_A$	$t = \frac{1}{4} h^2$ $t \ge \frac{1}{2} h^2$
Full sibs	$\frac{1}{2}V_A^2 + \frac{1}{4}V_D + V_{Ec}$	$t \ge \frac{1}{2} h^2$

H chez le haricot

Trait	H ²
Plant height	45
Hypocotyl diameter	38
Number of branches/plant	56
Nodes in lower third	36
Nodes in mid section	45
Nodes in upper third	46
Pods in lower third	62
Pods in mid section	85
Pods in upper third	80
Pod width	81
Pod length	67
Seed number per pod	30
100 seed weight	77

H chez la vache laitière Holstein

Trait	h²
ME (mature equivalent) Milk Yield	0.3
Fat Percent	0.58
Protein Percent	0.51
Lactose Percent	0.43
Stature	0.42
Strength	0.31
Foot Angle	0.15
Persistency of Milk Yield	0.11
Days to First Breeding	0.04
Number of Inseminations	0.02
Rear Udder Height	0.28
Rear Udder Width	0.23
Front Teat Placement	0.26


Différentiel de sélection et réponse à la sélection

- Le différentiel de sélection (S) = la différence entre la valeur moyenne des individus sélectionnées et la valeur moyenne de la population
- La réponse à la sélection (R) = la différence entre la valeur moyenne de la descendance des individus sélectionnés et la celle de la génération précédente (avant la sélection)
- R exprime le changement de la moyenne de la population entre les génération successives
- Prédiction de la réponse à la sélection

$$R = h^2 S$$

Différentiel de sélection et réponse à la sélection

- R dépend de:
 - La variation phénotypique
 - L'héritabilité
 - La pression de sélection

Réponse corrélée et sélection indirecte

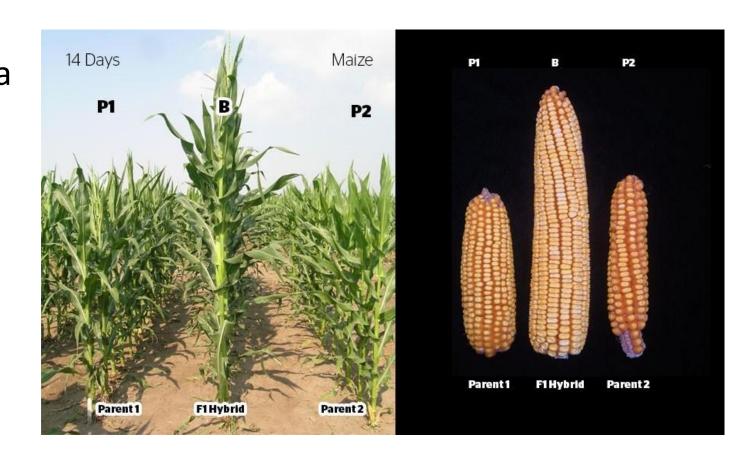
- La corrélation (ou association) entre caractères peut être d'origine génétique ou non génétique
- Si génétique: la sélection pour un caractère va causer le changement de l'autre,
 C'est la réponse corrélée
- Causes: pléiotropisme ou liaison génétique (linkage)
- Pour le sélectionneur: caractères primaires et secondaires
- Si le caractère secondaire est bien corrélé avec le primaire, facile à mesurer, hautement héritable, moins sensible à l'environnement, alors: **Sélection indirect**

- Sélection en tandem (en série)
 - Se focaliser sur un seul caractère à la fois
 - Les questions à résoudre:
 - Ordre des caractères
 - Nombre de génération de sélection pour chaque caractère
 - Intensité de sélection

- Sélection tronquée
 - Sélection de plusieurs caractères par génération
 - Ex: 3 caractères: A, B et C
 - Sélectionner 50% des plantes selon A
 - Sur le sous-groupe précédent sélectionner 40% des plantes selon B
 - Sur le sous-groupe précédant sélectionner 50% des plantes selon C
 - Intensité de sélection = 0.5 x 0.4 x 0.5

- Sélection par indice (index selection)
 - Principe: transformer un ensemble de caractère en un caractère unique: l'indice de sélection
 - Forme d'un indice de sélection:

$$I = b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_m x_n$$

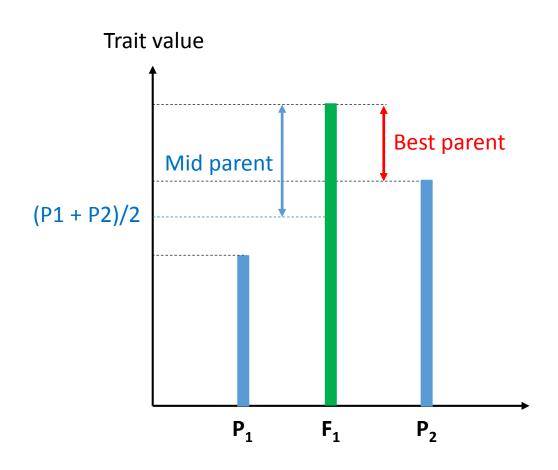

- $x_1 \dots x_n$: performances phénotypiques
- $b_1 \dots b_m$: poids assignés à chaque caractère en fonction d'un ordre de mérite

- L'ordre de mérite dépend de quoi?
 - Importance économique
 - Héritabilité
 - Corrélation phénotypiques entre les caractères
- Les valeurs phénotypiques doivent être standardisée:

$$X_i = (X - \mu)/\sigma_x$$

- Hétérosis = vigueur hybride
- **Définition:** Augmentation de vigueur observée au niveau de la descendance d'un croisement entre deux individus génétiquement éloignés.
- **Dépression de consanguinité:** baisse de vigueur chez les individus issus de croisements entre apparentés
- Le plus souvent, ces phénomènes se manifestent chez allogames

 L'histoire de l'hétérosis et de la création de variétés hybrides est très liée à l'histoire de l'amélioration génétique du maïs


- Au début du XX^e siècle: essai de sélection du maïs en utilisant la méthode généalogique
- Méthode inutile: dépression de consanguinité
- George Shull (1908):
 - Les meilleurs individus d'une population devraient êtres fortement hétérozygotes
 - Proposition d'une méthode de création de variétés hybrides: développement de lignées consanguines + croisement
 - Proposition de « Heterosis » par contraction de « Heterozygosis »

- Hétérosis au sens du sélectionneur vs généticien
 - Hétérosis meilleur parent (best parent)

$$BPH = F_1 - P_{max}$$

Hétérosis parent moyen (mid parent)

$$MPH = F_1 - (P_1 + P_2)/2$$

L'importance de l'hétérosis et de la consanguinité sont très variables selon les espèces, les caractères et les conditions de milieu

Variation en fonction des espèces

- Hétérosis rendement en grain ou biomasse:
 - Les allogames (maïs, luzerne, graminiées fourragères, oignon):
 - BPH: 100 à 400%
 - Les autogames (blé, riz, arabidopsis, colza [semi-allogame]):
 - BPH: 0 à 40%

Variation en fonction des caractères

Rendement en grain		Hauteur de la plante		Largeur des feuilles	
H (%)	D (%)	H (%)	D (%)	H (%)	D (%)
233	70	32	24	13	11,5

H: MPH, D: dépression de consanguinité

D'une façons générale, l'hétérosis et la dépression de consanguinité sont plus importants pour les caractères complexes et fortement liés à la valeur sélective de la plante (fitness = viabilité + fertilité)

Variation en fonction du milieu

- L'hétérosis est souvent plus élevé en conditions défavorables
- Faible fertilité, asphyxie racinaire, sol acide, stress thermique...
- Résultats expérimentaux observés chez plusieurs espèces (maïs, dactyle (graminée fourragère), blé, *Arabidopsis*...)
- Avantage des hybrides: stabilité
- Un hybride en culture peut être assimilé à un peuplement végétal hétérogène: les différents allèles sont réunis dans un seul génotype,

Hétérosis et distance génétique

- L'hétérosis est plus élevé avec le croisement d'individus génétiquement distant.
- Cependant, il n'y a pas toujours accroissement de l'hétérosis lorsque la distance génétique augmente

Les bases génétiques de l'hétérosis

- La dominance: complémentation entre les parents de gènes dominant favorables
- Les mécanismes d'épistasie et de superdominance sont aussi impliqués dans la manifestation de l'hétérosis au niveau de certains *loci*