Université de Tlemcen Faculté des sciences Département de Mathématiques

> 2ème Année Licence (S4), 2019-2020 Corrigé de la série d'exercices de Géométrie N°3 24 Avril 2020

Enseignante:

H. BENALLAL

Exercice 1.

Soit α une courbe paramétrée par la longueur de l'arc avec $k, \tau \neq 0$. 1) $\alpha \in \text{Sphère}$:

On a $\|\alpha(t)\| = cste$, donc $\alpha'(t).\alpha(t) = 0$, c-a-d $T.\alpha(t) = 0$.

D'autre part $\alpha(t) = \lambda T + \mu N + \nu B...(*)$

composant (*) par T: $T.\alpha(t) = \lambda ||T|| + \mu(N.T) + \nu(B.T) = 0$, donc $\lambda = 0$. D'où $\alpha = \mu N + \nu B...(1)$.

Dérivons (1): $\alpha'(t) = \mu' N + \mu N' + \nu' B + \nu B'$. Les formules de Frenet donnent: $T = \mu' N - \mu k T + \mu \tau B + \nu' B - \tau \nu N$. C'est-à-dire: $(1 - \mu k)T + (\tau \nu - \mu')N - (\nu' + \mu \tau)B = 0$. Ce ci implique

$$\begin{cases} 1 - \mu k &= 0 \\ \tau \nu - \mu' &= 0 \\ \nu' + \mu \tau &= 0 \end{cases} \Rightarrow \begin{cases} \mu k &= \frac{1}{k} \\ \tau \nu - \mu' &= \frac{1}{\tau} (\frac{1}{k})' \\ \nu' + \mu \tau &= 0 \dots \end{cases} (2)$$

(2) donne
$$\left(\frac{1}{\tau}(\frac{1}{k})'\right)' = 0.$$

Inversement:

 $\alpha-(\lambda T+\nu N+\nu B)$ un vecteur de $\mathbb{R}^3.$ Montrons que ce vecteur est constant.

$$(\alpha - (\lambda T + \mu N + \nu B))' = \alpha' - \lambda' T - \lambda T' - \mu' N - \mu N' - \nu' B - \nu B'$$

$$= T - \lambda' T - \lambda k N - \mu' N + \mu k T - \mu \tau B - \nu' B + \tau \nu N$$

$$= (1 - \lambda' + \mu k) T + (\tau \nu - \mu' - \lambda k) N + (-\nu' - \mu \tau) B$$

$$= (1 - \mu k) T + (\tau \nu - \mu') N + (-\nu' - \mu \tau) B \quad (\lambda = 0)$$

$$= (1 - \frac{1}{k} k) T + (\tau \nu - \tau \nu) N - (\nu' - \nu') B = 0$$
C-à-d $\alpha - (\lambda T + \nu N + \nu B) = cste$

Exercice 2.

On considère l'ellipsoïde E d'équation $x^2 + y^2 + 5z^2 = 1$.

1. Montrer que $\varphi(u,v)=(\cos u\sin v,\sin u\sin v,\frac{1}{\sqrt{5}}\cos v)$ avec $(u,v)\in]0,2\pi[\times]0,\pi[$ est une paramétrisation régulière de E.

On a bien $(\cos u \sin v)^2 + (\sin u \sin v)^2 + 5\left(\frac{1}{\sqrt{5}}\cos v\right)^2 = \sin^2 v + \cos^2 v = 1.$

De plus, La différentielle de φ en un point (u, v) de $]0, 2\pi[\times]0, \pi[$ est donnée par la matrice

$$\begin{pmatrix} -\sin u \sin v & \cos u \cos v \\ \cos u \sin v & \sin u \cos v \\ 0 & -\frac{1}{\sqrt{5}} \sin v \end{pmatrix}$$

Donc elle est toujours de rang 2. Par exp: $\det \begin{pmatrix} -\sin u \sin v & \cos u \cos v \\ \cos u \sin v & \sin u \cos v \end{pmatrix} \neq 0$. Cette représentation est

2. Calculer l'aire de la surface E.

le plan tangent est engendré par les vecteurs φ_u et φ_v où: $\varphi_u = (-\sin u \sin v, \cos u \sin v, 0)$ et $\varphi_v = \left(\cos u \cos v, \sin u \cos v, -\frac{1}{\sqrt{5}}\sin v\right)$. Dans cette base, la matrice

de la première forme fondamentale est $\left(\begin{array}{cc} E & F \\ F & G \end{array} \right) = \left(\begin{array}{cc} \sin^2 v & 0 \\ 0 & \cos^2 v + \frac{1}{\varepsilon} \sin^2 v \end{array} \right).$

L'élément de volume est: $\sqrt{EG - F^2} du dv = \frac{1}{\sqrt{5}} \sin v \sqrt{1 + 4\cos^2 v} du dv$. L'aire de l'ellipsoïde est donc

 $A[E] = \int_{-\infty}^{\pi} \int_{-\infty}^{2\pi} \frac{1}{\sqrt{5}} \sin v \sqrt{1 + 4\cos^2 v} du dv$

$$=2\pi \int_{v=0}^{\pi} \frac{1}{\sqrt{5}} \sin v \sqrt{1+4\cos^2 v} du dv = \frac{2\pi}{\sqrt{5}} \int_{t=-1}^{1} \sqrt{1+4t^2} dt$$

En utilisant le changement de variable $2t = \sinh \theta$, on obtient le calcul de primitive

$$\int \sqrt{1+4t^2} = \frac{1}{2} \int \cosh^2 \theta d\theta = \frac{1}{4} \int (\cosh(2\theta)+1) d\theta = \frac{1}{4} \left(\frac{1}{2} \sinh(2\theta) + \theta \right)$$
$$= \frac{1}{4} \left(\sinh \theta \cosh \theta \right) + \theta \right) = \frac{1}{4} \left(2t \sqrt{1+4t^2} + \ln(2t + \sqrt{1+4t^2}) \right)$$

Par conséquent, l'aire de E est:

$$A[E] = \frac{\pi}{\sqrt{5}} \left(2\sqrt{5} + \ln(2 + \sqrt{5}) \right) = \pi \left(2 + \frac{\ln(2 + \sqrt{5})}{\sqrt{5}} \right)$$

Exercice 3.

Soit a > 0.

1. Déterminons les coefficients E, F, G de la première forme fondamentale de la caténoïde C:

 $f_u = (-a\cosh v\sin u, a\cosh v\cos u, 0); f_v = (a\sinh v\cos u, a\sinh v\sin u, a)$

ce qui donne

$$E = f_u \cdot f_u = a^2 \cosh^2 v; F = f_u \cdot f_v = 0; G = f_v \cdot f_v = a_2 \cdot \cosh_2 v$$

Et pour $p \in C$, on a donc

$$I_p = \left(\begin{array}{cc} a^2 \cosh^2 v & 0 \\ 0 & a^2 \cosh^2 v \end{array} \right).$$

2. Le nouveau paramétrage de l'hélicoïde H: $g(s,t)=(t\cos s,t\sin s,as)$. Soit $\phi(u,v)=(s,t)=(u,a\sinh v)$, la matrice jacobienne de ϕ est

$$A = \begin{pmatrix} \frac{\partial s}{\partial u} & \frac{\partial s}{\partial v} \\ \frac{\partial t}{\partial u} & \frac{\partial t}{\partial v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & a \cosh v \end{pmatrix}$$

Le déterminant de A est: $\det A = a \cosh v \neq 0$ car a > 0.

La matrice A est inversible et donc $g \circ \phi$ est un nouveau paramétrage de l'hélicoïde donné par: $g(u, v) = (a \sinh v \cos u, a \sinh v \sin u, au)$

3. Déterminons les coefficients E', F', G':

 $g_u = (-a \sinh v \sin u, a \sinh v \cos u, a); g_v = (a \cosh v \cos u, a \cosh v \sin u, 0)$

Ce qui donne

$$E' = g_u \cdot g_u = a^2 \cosh^2 v; F' = g_u \cdot g_v = 0; G' = g_v \cdot g_v = a^2 \cosh^2 v;$$

Et pour $p \in H$, on a

$$I_p' = \begin{pmatrix} a^2 \cosh^2 v & 0\\ 0 & a^2 \cosh^2 v \end{pmatrix} = I_p.$$

4. On conclut qu'il est possible de transformer la caténoïde en hélicoïde de manière continue. Ce qui implique que ces deux surfaces sont localement isométriques.

Exercice 4.

Soit S la surface de \mathbb{R}^3 d'équation $2(2z^2 + y^2) + x = 0$

- 1. La surface S est paramétrée par $\phi(u,v) = (-2(u^2+2v^2),u,v)$.
- **2.** Déterminer une base de l'espace tangent à la surface S en A(-6,1,-1):

Le point A est obtenu au point du paramètre (u, v) = (1, -1), on calcule

$$\frac{\partial \phi}{\partial u} = \phi_u = (-4u, 1, 0) \text{ et } \frac{\partial \phi}{\partial v} = \phi_v = (-8v, 0, 1)$$

Donc $\phi_u(1,-1) = (-4,1,0)$ et $\phi_v(1,-1) = (8,0,1)$. Ces deux vecteurs forment une base de l'espace tangent à S au point de paramètre (u,v) = (1,-1).

3. Calculer un vecteur normal à la surface S en A(-6,1,-1): On a $N(u,v) = \phi_u \wedge \phi_v = (1,4u,8v)$ d'où N(1,-1) = (1,4,-8).

4. Calculer, au point p de S, la première forme fondamentale I_p de S: Soit $p=\phi(u,v)\in S$, le plan tangent au point p est engendré par $\{\phi_u,\phi_v\}$ où $\phi_u=(-4u,1,0)$ et $\phi_v=(-8v,0,1)$.

la première forme fondamentale I_p de S est définie par la matrice symétrique $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$, où $E=(\phi_u.\phi_u),\ F=(\phi_u.\phi_v)$ et $G=(\phi_v.\phi_v)$. On calcule $E=16u^2+1,\ F=32uv$ et $G=64v^2+1,\ \mathrm{donc}$

$$I_p = (16u^2 + 1) du^2 + 64uvdudv + (64v^2 + 1) dv^2$$

•

Exercice 5.

Soient F le point (0,0,1) de \mathbb{R}^3 et H le plan d'équation z=-1.

On pose $S = \{M \in \mathbb{R}^3 \text{ telque} : \text{distance de } M \text{ à } F = \text{distance de } M \text{ à } H\}$

1. Montrer que l'ensemble S est défini par une équation de la forme z = f(x, y) qu'on explicitera.

Soit $M = (x, y, z) \in \mathbb{R}^3$, la distance de M à F est donnée par: $d_1(M, F) = \sqrt{x^2 + y^2 + (z - 1)^2}$, et celle de M à H est définie par: $d_2(M, H) = |z + 1|$.

Comme, par hypothèse, $d_1(M, F) = d_2(M, H)$, alors: $x^2 + y^2 + (z - 1)^2 = (z + 1)^2$. Ce qui donne $z = \frac{1}{4}(x^2 + y^2)$. D'où $f(x, y) = \frac{1}{4}(x^2 + y^2)$.

2. Donner un paramétrage régulier de S.

On paramètre la surface S par

$$\chi(u,v) = \left(u, v, \frac{1}{4}(u^2 + v^2)\right)$$

La différentielle de χ en un point (u,v) de $U\subset \mathbb{R}^2$ est donnée par la matrice

$$\left(\begin{array}{ccc}
1 & 0 \\
0 & 1 \\
\frac{1}{2}u & \frac{1}{2}v
\end{array}\right)$$

donc elle est toujours de rang 2. Cette représentation est donc régulière.

3. Calculer, en chaque point $p \in S$, la première forme fondamentale I_p de S.

le plan tangent à S en un point $p \in S$ est engendré par les vecteurs χ_u et χ_v où les dérivées premières du paramétrage sont:

$$\chi_u = \left(1, 0, \frac{1}{2}u\right) \text{ et } \chi_v = \left(0, 1, \frac{1}{2}v\right).$$

Dans cette base, les coefficients de la première forme fondamentale sont donnés par:

$$E = \chi_u \cdot \chi_u = 1 + \frac{1}{4}u^2$$
, $F = \chi_u \cdot \chi_v = \frac{1}{4}uv$ et $G = \chi_v \cdot \chi_v = 1 + \frac{1}{4}v^2$.

d'où, la matrice de la première forme fondamentale est:

$$I_p = \begin{pmatrix} 1 + \frac{1}{4}u^2 & \frac{1}{4}uv \\ \frac{1}{4}uv & 1 + \frac{1}{4}v^2 \end{pmatrix}$$