

Série de TD Nº 4 ELECTROCINETIQUE

Exercise 1

Consider the circuit shown in the figure below:

1- Calculate the equivalent resistance of the circuit.

2- Given the generator voltage E=56V, calculate the current I delivered by the generator, specifying the direction of flow.

- 3- Calculate the voltage V_{AC} between points A and C, and deduce the current in branch CD.
- 4- Calculate the voltage V_{EF} between points E and F, and deduce the current in the EF branch.
- 5- Calculate the current in branch GH, and deduce the voltage V_{GH} between points G and H.
- 6- Calculate the power P supplied by source E.

Exercise 2

Consider the circuit shown in Figure 3:

- 1- Calculate the currents flowing through the three resistors and the current generated by the generator.
- 2- Put the three resistors and the generator together, as shown in figure 4.
- Calculate I₁, I₂ and I₃.
- Find the current I₁ using the equivalent circuit resistance.

Exercise 3

Consider the circuit shown in the following diagram:

1- Calculate the value of the current I delivered by the generator, using Kirchhoff's two laws.

2- Find the value of the current I, using the equivalent resistance of the circuit.

3- Determine the potential difference (p.d.d) across R_2 and deduce the power generated by this resistor (R_2).

4- Find the currents flowing through resistors R_4 and R_5 .

We give: E=12V, $R_1=2\Omega$, $R_2=20\Omega$, $R_3=16\Omega$, $R_4=6\Omega$, $R_5=12\Omega$

University of Tlemcen Faculty of Sciences Department of Mathematics

Exrcise 4

Consider the following circuit:

We give : $R_1 = 1k\Omega$, $R_2 = 2k\Omega$, $R_3 = 4k\Omega$, $R_4 = R_5 = 3k\Omega$; The voltage across the resistance R_2 is, $U_{R2} = 8v$, and the current $I_3 = 2mA$.

Calculate E et R.

Exercise 5

The following circuit has six resistors ($R_1=10\Omega$, $R_2=20\Omega$, $R_3=20\Omega$, $R_4=5\Omega$, $R_5=6\Omega$, $R_6=3\Omega$) and two generators ($E_1=20v$, $E_2=10v$).

1- Simplify the electrical circuit by calculating the equivalent resistances.

2- Calculate the currents I_1 , I_2 and I_3 using Kirchoff's laws.

Supplementary exercise

Consider the circuit shown in the following figure:

We give $E_1=12V$, $E_2=8V$, $r_1=r_2=1\Omega$, $R_1=4\Omega$, $R_2=3\Omega$, $R_3=5\Omega$ and $C=2\mu F$.

1- Assuming the capacitor is fully charged, calculate the currents I_1 , I_2 and I_3 using Kirchoff's laws.

2- Calculate the potential difference between points A and B.

- 3- Calculate the capacitor charge Q. What energy is stored in the capacitor?
- 4- What is the power released by resistance R_3 ?

