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Salmonella 

Salmonella bacteria can cause gastroenteritis, typhoid fever, and other infections. 
Common symptoms of a Salmonella infection include diarrhea, abdominal cramps, a fever, 
and vomiting. Sources include certain foods. 

Most people with Salmonella infections have mild symptoms and recover without 

treatment. However, some require care in a hospital setting. 

People often develop this type of infection after coming into contact with contaminated 
food or water. 

Salmonella is a type of bacteria that can cause diarrheal illness in humans. 

Symptoms usually appear between 6 hours and 6 days Trusted Source after the initial 
infection and last 4–7 days. 
They include: diarrhea, stomach cramps and abdominal pain, a sudden fever, nausea, 
vomiting, in some cases. 

Some strains of Salmonella can infect the urine, blood, bones, joints, and the nervous 
system, including the spinal fluid and brain. Severe complications can result. 

Salmonella bacteria live in the intestines of birds, animals, and humans. Most infections in 
humans develop after eating food or drinking water that has been contaminated by feces. 

Uncooked meat, seafood, and poultry: Contamination can occur during processing. For 
example, harvesting seafood in contaminated waters is a common cause 
of Salmonella infection. 

Also, the infection can spread if a person handles contaminated raw meat, then touches 
other food without washing their hands. 

Uncooked eggs: Eggs from a bird with a Salmonella infection can contain the bacteria. 
 
The Food and Drug Administration (FDA) estimate that every year, 79,000Trusted Source  
 cases of foodborne illness occur in the U.S. due to eggs containing Salmonella. 
 
Cooking the eggs can reduce the risk. However, some popular sauces, such as mayonnaise, 
can contain raw eggs. 

Fruits and vegetables: Watering fruit or vegetable plants with contaminated water, or 
washing the produce in this water, can lead to Salmonella infection. 

Lack of hygiene: Contamination and infection can occur if people do not keep kitchen 

surfaces clean and do not wash their hands during food preparation, after using the 

bathroom, and after changing a baby’s diapers. When a person has the bacteria on their 

https://www.cdc.gov/salmonella/index.html
https://www.fda.gov/food/resourcesforyou/consumers/ucm077342.htm
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hands, they can spread it by touching other people or by touching frequently used objects 

and surfaces. 

AvrilJ.L., Dabernat H., Denis F., Monteil H., Bacteriologie clinique : salmonelle, 3e 

édition, Paris, Ellipses ; 2000 : 189-207. 
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Abstract 

Background: Salmonella in chicken, specially, the motile salmonellae, causes the food chain unsafe from 

farm to table and is considered a significant global threat to public health. 

Aims: The present study was carried out for molecular detection of Salmonellae in commercial poultry using 

PCR. 

Methods: The study was conducted for eight months, from July 2019 to February 2020, and a total of 26 

poultry farms, including 15 broiler and 11-layer farms, were visited individually. Pooled faecal samples were 

obtained from the sheds. A total of 189 necropsy cases were examined for gastrointestinal lesions. Isolation 

and identification of the organism were done using microbe culture method, and the molecular 

characterization was performed via PCR targeting invA and ent genes. 

Results: The prevalence of salmonellosis in the broiler and layer farms was recorded at 20.0% and 45.4%, 

respectively, through the traditional gold standard culture method. From 189 necropsy birds, salmonellosis 

was recorded at 1.58% dead cases. Further detection of Salmonella enteritidis was performed by PCR 

targeting ent gene by which 11.11% positivity was determined. 

Conclusion: This study, focused on the Salmonella prevalence, highlighted the importance of the bacterium 

in the commercial poultry farms, which can subsequently be dispersed into the human food chain causing 

harmful health effects. 

Keywords: Molecular detection; PCR; Poultry; S. enteritidis; Salmonella. 
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Simple Summary: Salmonella is one of the most important zoonotic pathogen agents, causing an
estimated 93.8 million cases of gastroenteritis worldwide annually, with 155,000 deaths. Efforts to
reduce transmission of Salmonella by food and other routes must be implemented on a global scale.
Salmonellosis control strategies are based on two fundamental aspects: (a) the reduction of prevalence
levels in animals and (b) protection against infection in humans. Thus, this review will be focused on
Salmonella and its relationship between animals and public health (one health approach). The aim is to
update the status of Salmonella in the world, with special reference to its implications on epidemiology
and public health, food chain and risk assessment, antimicrobial resistance, and control strategies.
We strongly believe that this review is an opportunity to collect significant and relevant information,
using an integral approach, on Animal Health, Public Health, and the relationship between the two.

Abstract: Salmonellosis is globally recognized as one of the leading causes of acute human bacterial
gastroenteritis resulting from the consumption of animal-derived products, particularly those de-
rived from the poultry and pig industry. Salmonella spp. is generally associated with self-limiting
gastrointestinal symptoms, lasting between 2 and 7 days, which can vary from mild to severe. The
bacteria can also spread in the bloodstream, causing sepsis and requiring effective antimicrobial
therapy; however, sepsis rarely occurs. Salmonellosis control strategies are based on two fundamental
aspects: (a) the reduction of prevalence levels in animals by means of health, biosecurity, or food
strategies and (b) protection against infection in humans. At the food chain level, the prevention of
salmonellosis requires a comprehensive approach at farm, manufacturing, distribution, and consumer
levels. Proper handling of food, avoiding cross-contamination, and thorough cooking can reduce
the risk and ensure the safety of food. Efforts to reduce transmission of Salmonella by food and other
routes must be implemented using a One Health approach. Therefore, in this review we provide an
update on Salmonella, one of the main zoonotic pathogens, emphasizing its relationship with animal
and public health. We carry out a review on different topics about Salmonella and salmonellosis, with
a special emphasis on epidemiology and public health, microbial behavior along the food chain,
predictive microbiology principles, antimicrobial resistance, and control strategies.

Keywords: Salmonella; salmonellosis; animal health; public health; food chain; predictive microbiol-
ogy; antimicrobial resistance; control strategies; one health

1. Introduction

Salmonella spp. is recognized as a major zoonotic foodborne pathogen of economic
significance in animals and humans; it causes an estimated 90 million cases of gastroenteritis
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worldwide annually, with approximately 155,000 deaths [1]. Even though salmonellosis is
mostly reported as a foodborne disease, it has been estimated that about 10% of the cases
are due to direct contact with animals [2].

Salmonella is a genus of highly diverse bacteria that live in the digestive tract of humans
and animals. They are widespread in the environment thanks to their ability to survive
and adapt even under extreme conditions [3].

Among the over 2600 Salmonella serovars described, clinical manifestations and mor-
tality differ depending on both serovar and host characteristics (breed, age, sex, nutrition,
and/or immunity) [4].

These serovars are divided into typhoidal and non-typhoidal serovars (NTSs); all
of them can cause diseases in animals and/or humans with different levels of severity.
Typhoidal serovars are highly adapted to the human host, which is their exclusive reservoir.
They are, thserefore, only transmittable through human-to-human contact and cause a
potentially life-threatening syndrome known as typhoid (S. typhi) or paratyphoid fever
(S. paratyphi). Most European cases are considered imported cases and generally involve
people returning from endemic countries [4].

NTSs are known as zoonotic agents. They are spread from animals and foods to
humans but also through human-to-human close contact; they are widely present in
the environment and can infect animals and contaminate both water and food. Usually,
zoonotic salmonellosis occurs because of a true foodborne infection of animal or plant
origin or through close contact with carrier animals [4].

Regarding human infections, only a few of the NTSs are responsible for most human
cases. Of these, S. enteritidis and S. typhimurium are considered the most important serovars
with the greatest impact on public health, being responsible for more than 70% of human
infections, as illustrated in Table 1.

Table 1. Distribution of confirmed cases of human salmonellosis acquired in the EU Member States
(MSs), 2019–2021, for the six most frequent Salmonella serovars in 2021 [4].

Serovar 2021 2020 2019

Cases MSs % Cases MSs % Cases MSs %

Enteritidis 23,634 23 64.6 21,203 23 63.1 32,010 24 61.6
Typhimurium 4027 23 11.0 3702 22 11.0 6044 24 11.6
Monophasic
Typhimurium
1,4,[5],12:i:-

1269 14 3.5 1530 16 4.6 2668 17 5.2

Infantis 633 23 1.7 716 21 2.1 1215 24 2.3
Derby 239 16 0.7 260 17 0.8 396 20 0.8
Coeln 315 14 0.9 201 17 0.6 270 15 0.5
Other 6462 - 17.7 6009 - 17.9 9378 - 18.0

Total 36,579 23 100 33,621 23 100 52,001 24 100

Most serovars are non-pathogenic for animals but highly pathogenic for humans.
Currently, in the European Union (EU), Salmonella enteritidis as well as S. typhimurium
and its monophasic variant are the main serovars responsible for human disease (Table 1).
However, S. infantis serovar has emerged as the fourth most prevalent serovar associated
with human disease [4].

The European Food Safety Authority (EFSA) has recently reported an increase in the
frequency and severity of human infections caused by S. typhimurium and its monophasic
variant, which are associated with meat products derived from swine or cattle [5–7].

A wide range of domestic and wild animals can host Salmonella and thereby become
reservoirs: poultry, swine, cattle, wild birds, rodents, pets, and exotic animals. In fact,
pets such as dogs and cats and exotic animals such as reptiles and amphibians may play a
significant role in transmitting the pathogen in the environment and household by excreting
Salmonella, which can infect other animals and humans throughout the environment [8,9].
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For example, the increase in the private ownership of reptiles has led to a rise in the number
of zoonotic infections [10–12]. Additionally, rodents and birds act as Salmonella amplifiers,
playing an essential part in the dissemination of bacteria on farms [13].

The slaughter process can also constitute a source of contamination, especially when
adequate hygiene conditions are not maintained. Salmonella, which can be present in the
intestinal contents of carrier animals, may cause contamination at various stages of the
slaughter process, such as in trucks, lairages, slaughter lines, and quartering [14].

The primary clinical manifestation of salmonellosis in humans is self-limiting gas-
troenteritis, characterized by diarrhea, abdominal pain, fever, headache, nausea, and/or
vomiting, which typically resolve within 2 to 7 days. However, in certain cases, especially
among children and elderly patients, the illness can progress to a severe and life-threatening
condition, accompanied by systemic bacteremia [1].

In contrast, subclinical infections are common in animals, where the bacteria can
easily spread between flocks without detection, and animals may become intermittent
or persistent carriers. Animals can become infected through different means: (i) close
contact with other infected animals; (ii) contaminated water or direct contact with feces
due to farm management and/or with contaminated equipment; (iii) transmission from
parents to offspring (e.g., S. abortusovis, S. indiana) [15,16]; (iv) transmission from feed and
environment; (v) potential transmission by arthropods.

Regarding foodborne transmission, there is strong evidence from outbreaks in the EU
of various foods acting as vehicles [4], e.g., egg and egg products (39 outbreaks), mixed
food (24), bakery products (15), pig meat and associated products (14), and vegetables and
juices and other products thereof (11). Other food vehicles causing foodborne outbreaks
in the EU are raw milk and dairy products made with raw milk, seafood products, and
processed foods (e.g., sweets and chocolate) [4].

Salmonella strain typing is a crucial component of routine laboratory investigations [17].
Phage typing and serotyping, as well as molecular methods, are essential tools for this
purpose. They enable the identification and isolation of such strains from primary animal
sources as well as non-animal sources (i.e., food, water, and environmental samples). The
most commonly utilized methods include pulsing-field gel electrophoresis (PFGE) and
multiple locus variable analysis (MLVA). New genome-based typing methods, such as
whole genome sequencing (WGS), are employed to track outbreaks and determine the
epidemiological origin of the infection [18–20].

Efforts to reduce the transmission of Salmonella through food and other routes must
be implemented using a one health approach. At the food chain level, the prevention of
salmonellosis requires a comprehensive approach at farm, manufacturing, distribution,
and consumer levels.

This review provides an overview of the Salmonella and salmonellosis status. It is a
useful update of concepts for health professionals involved in animal health and public
health. It is a review that facilitates and improves the understanding of the epidemiology
and control of the main indicator pathogen of zoonoses, Salmonella.

2. Salmonella and Its Relationship with Foodborne Outbreaks: Update in the EU
2.1. EFSA Fact Sheet

The European Food Safety Authority (EFSA) provides independent scientific support
and advice by collecting and analyzing data on the prevalence of Salmonella in animals
and foods. It does so by assessing the food safety risks posed by the bacterium for human
health and advising on possible control and reduction options. EFSA’s findings are used by
risk managers in the EU and the member states in their decision making and support the
setting of reduction targets for Salmonella in the food chain. EFSA supports the EU’s fight
against Salmonella using three methods (https://www.efsa.europa.eu/sites/default/files
/corporate_publications/files/factsheetsalmonella.pdf, accessed on 15 August 2023) [21]:
(i) annual monitoring of Salmonella in animals and food to measure its progress; (ii) risk
assessments and recommendations; (iii) EU-wide surveys on the prevalence of Salmonella.

https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetsalmonella.pdf
https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetsalmonella.pdf
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2.2. Foodborne Outbreak Dashboard in the EU

According to Directive 2003/99/EC [22], EU Member States are obliged to report
information on foodborne and waterborne outbreaks. The interactive tool (https://ww
w.efsa.europa.eu/en/microstrategy/FBO-dashboard, accessed on 15 August 2023) [23]
provides the latest information on foodborne outbreaks and epidemiological information
of interest in the year 2021 [4].

The dashboard shows that a total of 4088 foodborne outbreaks (FBOs) occurred in the
EU in 2021. From these FBOs, there were 33,813 human cases, with 2560 hospitalizations
and 33 deaths. The trends between 2016 and 2021 show a slight decrease in these parameters,
with the exception of the death variable, because of the high mortality registered in 2019
and 2020 in human listeriosis cases.

The FBO-dashboard interactive tool shows all known outbreaks and cases per
100,000 people by country, the number of human cases and causative pathogen agents, and
the ranking of number of outbreaks by food vehicle and place of exposure.

2.3. Salmonella Occurrence in the EU

Salmonella spp. is the second most common zoonotic pathogen, after Campylobacter,
according to the most recent EU One Health Zoonoses Report [4], with both of them
causing gastrointestinal infections in humans. The number of confirmed cases of human
illness salmonellosis was 60,050, corresponding to an EU notification rate of 15.7 per
100,000 people and with a stable trend between 2017 and 2021. Among these cases, there
were 11,790 hospitalizations (45.0% of outbreak-associated hospitalizations) and 71 reported
deaths. Furthermore, EFSA data rank it as the leader, causing a total of 773 human cases
in foodborne outbreaks (20.8% of outbreak-associated cases), with 1123 hospitalizations
and 1 death. S. enteritidis was the predominant serovar (N = 350; 79.7% of all Salmonella
outbreaks). The top five serovars responsible for human infections are currently S. enteritidis,
S. typhimurium, S. typhimurium monophasic variant (mST), S. infantis, and S. derby.

Furthermore, an analysis of the most recent data released by EFSA on the distribution
of serovars at the primary-sector level reveals that the majority of Salmonella spp. isolates
originate from the production of broilers (Gallus gallus domesticus) (55.7%), with turkeys
(Meleagris gallopavo) coming in second with 12.9%, pigs (Sus scrofa domestica) with 7.6%,
and laying hens (Gallus gallus domesticus) with 6.0%. These data were obtained from
poultry populations that fall under the purview of the Salmonella National Control Program
(SNCP) [4]. While S. infantis was exclusively associated with broiler sources (95.2%), S.
enteritidis was mainly associated with broiler flocks and meat (70.0%) and laying flocks and
eggs (26.0%). On the other hand, the majority of S. typhimurium and mST isolates (43.2%
and 65.4%, respectively) were linked to pig sources [4].

A total of 73,238 ‘ready-to-eat’ food sampling units were collected, and they had a
very low proportion of Salmonella-positive units (0.23%) overall. The highest proportions of
positives were found for ‘meat and meat products from pigs’ (0.82%). For ‘non-ready-to-eat’
food, 466,290 sampling units were collected, and the proportion of positive samples was
low (2.1%). The food categories with the highest proportions of positive units were ‘meat
and meat products’ (2.2%), especially those from broilers (4.4%) and turkeys (3.6%) [4].

A significant increase in the estimated breeding turkey flock prevalence of Salmonella
was noted in 2021. Flock prevalence trends for target Salmonella serovars have, in contrast,
been stable over the last few years for all poultry populations.

3. An Update on Environmental Stresses Affecting Salmonella in Foods

The adaptation of Salmonella strains to different environmental stresses in foods has
been widely reported, including known increased resistance to low pH, low water activity,
and disinfectants, among others. Thus, Salmonella remains as an important concern in food
processing environments, traditionally linked to the development of greater tolerance and
cross-protection mechanisms, thus increasing the persistence along the food chain [24].

https://www.efsa.europa.eu/en/microstrategy/FBO-dashboard
https://www.efsa.europa.eu/en/microstrategy/FBO-dashboard


Animals 2023, 13, 3666 5 of 22

Besides the well-known effect of temperature, which is currently applied in pasteur-
ized foods [25], recent studies have shown a growing interest in the acquired resistance
mechanisms of Salmonella serovars against the presence of acids, low-water-activity foods,
and biofilm formation on biotic or abiotic surfaces [26]. All these cumulative hurdles are
applied at sub-lethal levels (especially in ready-to-eat foods), so that they promulgate an
adaptative response and enable the survival of a larger fraction of Salmonella cells.

3.1. Acid Resistance of Salmonella in Foods

Acid adaptation allows Salmonella to withstand the challenges posed by low pH levels
and potentially cause foodborne illnesses. Salmonella demonstrates the capacity to modify
its physiological characteristics and regulate gene expression against exposure to low
pH levels. This adaptation mechanism is especially interesting because of its viability
in acidic foods, where conditions might inhibit the growth of other microorganisms [27].
In foodstuffs, weak organic acids like acetic, lactic, and citric acids can be present due
to natural food constituents, fermentation processes, or intentional addition during food
production to enhance preservation.

The optimum pH for Salmonella growth is generally known to be between 6.5 and 7.5,
but the minimum pH value depends on many factors, such as the strain, the type of acid, or
the synergistic action when combined with other stresses such as NaCl. For instance, Pye
et al. [28] compared different Salmonella serovars in culture media supplemented with 6%
NaCl, 12 mM acetic acid, or 14 mM citric acid, and they found that S. typhimurium showed
the highest resistance to NaCl and acetic acid stress, while S. enteritidis showed the highest
resistance level for citric acid.

The increased tolerance to a low pH following acid habituation is referred to as the
Acid Tolerance Response (ATR), which has been shown to be strain dependent [29]. This
pH-dependent ATR might induce a posterior acid adaptation involving bacteria growth
in mildly acidic conditions [30]. These investigations also shed light on the mechanisms
of acid-induced cross-protection against ethanol stress in S. enteritidis during the growth
phase [27], which may lead to more efficient mitigation strategies.

3.2. Survival of Salmonella in Low-Water-Activity Foods

The high frequency of Salmonella in low-water-activity (aw) foods (such as powders,
flours, dried fruits, spices, oily foods, and nuts) is a cause for concern. Recent studies
have extensively reported on this situation due to the growing number of salmonellosis
outbreaks related to these products [31]. These matrices comprise a wide range of the
so-called Low-Moisture Foods (LMFs) as being those with reduced water content, making
them less favorable for the growth of most microorganisms. According to Food and Drug
Administration (FDA) standards, they have an aw at 25 ◦C of less than 0.85 [32]. These
conditions do not allow bacterial growth; however, several studies have demonstrated the
survival ability of Salmonella spp. in different LMFs [33,34] for months or even years, thus
potentially causing adverse health effects for susceptible population groups. Microbial
contamination can occur when handling and/or processing any contaminated LMF and/or
from environmental contamination, suspended air particles, or inert surfaces [35]. Adap-
tive responses in Salmonella help it survive by accumulating compatible solutes, including
proline, glycine, betaine, ectoine, and trehalose, leading to reduced water loss [36]. Further-
more, osmoregulation plays a vital role in maintaining the turgor pressure of the bacteria
through increasing the intracellular concentration of compatible solutes [37,38].

Industrial interventions to effectively control Salmonella in LMFs have been mainly
oriented toward thermal processing. Yet, there is a lack of knowledge on the main factors in-
volved in the thermal resistance of Salmonella in LMFs. Liu et al. [39] presented an overview
on the factors affecting the microbial safety of LMFs together with the latest developments
in analytical methods for the detection of pathogens in dried food commodities. Microbial
resistance of Salmonella in LMFs can differ according to the type of strain, physiological
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conditions of the pathogen, food composition (e.g., sugar or fat content), aw, and heating
temperature [40].

Importantly, the use of cocktails may ensure that novel processes can remove the most
resistant strains, as reported in previous studies [41,42]. Some of the latest studies deal with
the relationship between moisture content, as a better indicator than temperature, and aw
in the thermal inactivation of Salmonella in LMFs [43], the effect of food structure combined
with emerging technologies [44], and the design of novel test cells to better estimate aw in
the thermal resistance of Salmonella strains [45]. Despite these recent developments, food
industries might still be faced with the randomness and variety of environmental factors
associated with Salmonella contamination in LMFs, combined with its persistence for a
long-term storage period and the difficulties of current methods and sampling strategies in
its detection.

3.3. The Biofilm Formation of Salmonella in Food-Processing Environments

The different survival mechanisms of Salmonella, such as the formation of biofilms, are
hypothesized as possible factors for the onset of foodborne diseases. There is clear evidence
of the formation of biofilms by Salmonella in foods and in different materials present in
food processing environments [46–48]. Salmonella produces a biofilm matrix that is mainly
composed of fimbriae (curli) and cellulose [49]. The ability of Salmonella to adhere and form
biofilms is influenced by multiple factors, such as the composition of the growth medium,
the developmental stage of the cells, the characteristics of the inert material, the contact
time, the presence of organic substances, and environmental conditions like temperature
and pH [50].

Control strategies against Salmonella and microbial biofilms overall have been tradi-
tionally based on the use of chemical disinfectants, widely applied in the meat industry [51].
However, their effectiveness may differ depending on the type of surface. Other drawbacks
such as the increased bacterial resistance to sub-lethal concentrations of disinfectants and
the presence of chemical residues preclude their use as a valid antibiofilm strategy. An-
timicrobial resistance and toxicity issues have been associated with the use of antibiotics
or nanoparticles. Other control strategies still require the application mode and targeted
dose to be optimized, as the use of enzymes and quorum-sensing inhibitors are of dubious
efficacy against relevant biofilms [52]. Among the physical treatments, pulsed light and
UV-C radiation could inactivate the formation of Salmonella biofilms [53]. Gao et al. used a
combined pulsed light treatment with sodium hypochlorite at moderate levels (100 ppm for
30 min), and it was found to be effective in deactivating a six-cocktail strain of Salmonella
spp. However, the induction of sub-lethal cells caused by pulsed light deserves further
investigation. UV-C radiation alone has overall limited efficacy in reducing Salmonella
biofilm cells, but its combined use with organic acids with chemical sanitizers seems to be
a promising strategy in industrial facilities [54].

Recent developments in biofilm eradication are based on biocontrol strategies such as
the use of bacteriophages. Ashrafudoulla et al. [55] evaluated specific lytic bacteriophages
against S. thompson biofilms on eggshells, which showed better efficacy when using bac-
teriophage cocktails. In contrast, temperate Salmonella bacteriophages can confer greater
virulence and resistance to adverse factors, as shown by S. typhimurium biofilms. Therefore,
the expression of virulence genes and metabolic pathways of Salmonella induced by the
presence of bacteriophages deserves to be studied further [56]. Another comprehensive
study by Asma et al. [57] on natural strategies for biofilm control highlighted the use of
plant-based and bee products as antibiofilm molecules. Interestingly, the development
of plant-derived nanoparticles (NPs) has arisen as a promising strategy against various
bacterial biofilms, including the use of liposomes, cyclodextrins, or hydrogels.

Finally, dual-species biofilms using lactic acid bacteria and/or bacteriocins have
been extensively explored as a strategy for the competitive exclusion of Salmonella during
processing. Research trends are oriented toward the study of extracellular polymeric
substances (EPS) to better understand the mechanisms of Salmonella biofilm inhibition by
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LAB and to further explore combinations of LAB biofilms with other LAB metabolites
(hydrogen peroxide or bacteriocins) in industrial environments [58].

3.4. Predictive Microbiology Models for Estimation of the Microbial Behavior of Salmonella
in Foods

Since Salmonella can be present in several food commodities, microbial behavior along
the food chain has been extensively studied over recent decades. Predictive microbiology is
a field that involves using mathematical models and statistical tools to predict the behavior
of microorganisms in various environments [59]. Predictive models aim to describe the
effect of a certain process (e.g., disinfection, heat treatment, storage, etc.) modulated by a
range of environmental factors (e.g., pH, temperature, aw, etc.) on the microbial population
of interest. Predictions can be quantified through different parameters describing microbial
growth, survival, or inactivation, such as maximum growth rate, lag phase, inactivation rate,
etc. [60]. As such, applications of predictive microbiology may be oriented to different areas,
including food innovation, process control, risk management, reduction of food wastage,
design of experiments, and training. There is a wide range of predictive models for describ-
ing Salmonella behavior in various food categories. Growth, survival, or inactivation ability
has been extensively explored in eggs and egg products [61–63], meat products [64–66],
melons [67–69], low-moisture foods [40,70–73], and leafy vegetables [74,75], among others.
Furthermore, an extensive review of existing growth/no growth models of Salmonella was
presented by Carrasco et al. [76] as well as other cross-contamination models [77,78].

While the effect of the most representative environmental factors, such as temperature,
pH, and water activity, on Salmonella behavior has been properly characterized by the use
of dedicated models, research efforts are focused on the effect of emerging preservation
technologies or novel antimicrobial agents, as shown in some recent papers. Shahdadi
et al. [79] conducted a systematic review and modelling of the role of bacteriophages against
Salmonella in meat products, while Austrich-Comas et al. [80] evaluated a combined strategy
using starter cultures, storage, and high-pressure processing in dry fermented chicken
sausages. The use of radio frequency as an inactivation technology against Salmonella in
treated eggs was successfully modelled by Bermúdez-Aguirre and Niemira [81]. Other
models for Salmonella using pulsed ohmic heating, UV-radiation, ultrasound, and mi-
crowave technologies were reviewed by Alvarenga et al. [82]. It is clear that predictive
models can aid in decision making to establish standards for processing by using emerging
technologies. Future work should be oriented toward incorporating specific parameters
that accurately quantify the effectiveness of emerging technologies in food preservation.

With the advent of dedicated predictive microbiology software, the integration of
computational elements is crucial to providing an applicability dimension to predictive
models. Machine Learning (ML) algorithms enable computers to learn from and make pre-
dictions or decisions based on data. ML models can be trained to identify Salmonella genes
relevant to disease outcome, thus facilitating the integration of genomic data in microbial
risk assessment [83]. Other applications of ML techniques are related to pathogen source
attribution [84] and gene-based risk assessments [85]. The inclusion of meteorological fac-
tors in ML algorithms on Salmonella’s infectivity and outbreak scale was recently reported
by Karanth et al., 2023 [86]. The integration of these data with well-defined metadata offers
the opportunity for ML models to forecast future trends in antibiotic resistance, determine
the sources of pathogens, aid in the investigation of foodborne outbreaks, and enhance risk
assessment protocols.

The routine and successful use of mathematical models by the food industry as well
as governmental or educational agencies will depend on the development of appropriate
and useful applications (software tools) with easy management. There has been an effort to
harmonize data formats and model annotations to increase transparency and fit-for-purpose
use of predictive microbiology models in a real system. Recent software developments were
reviewed by Possas et al. [87]. The authors highlighted the novel fitting shiny apps and
improved algorithms that provide better data visualization and graphical representation.
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For industrial and health authorities, the use of web interfaces is becoming crucial for
a more effective interpretation of predictive models. MicroHibro software (www.microh
ibro.com, accessed on 15 August 2023) [88] was developed by the University of Córdoba
and includes a range of freely available applications related to predictive modelling (safety
and shelf life), sampling plans, and risk assessment tools [89]. Currently, MicroHibro
software is being updated to include quality or shelf-life models and more advanced risk
assessment features.

To illustrate the different predictive model applications for estimating Salmonella
behavior in the animal-derived foodstuffs supply chain, we show two examples using
validated models of pork meat and egg yolk.

MicroHibro contains 27 primary and secondary predictive models of Salmonella, in-
cluding raw vegetable products (tomato, lettuce, avocado, apple, strawberry, cantaloupe),
beverages (soya milk), and animal foods (fresh salmon, pork meat, and egg byproducts).
Additional models can be included using information from published studies or experi-
mental works. Nevertheless, data curation and inclusion of new models are performed by
experts from the University of Cordoba upon request.

The model of Pin et al. [90] was developed for ground pork using data from the
literature on different Salmonella serovars. The model can describe the microbial fate in the
pork supply chain considering that, according to the product formulation, Salmonella could
tentatively grow or survive during storage. For this case study, growth will be assumed as
a function of different pH, aw, and temperature conditions. It is well known that before
industrial application, predictive models must be validated in the food of interest [59]. Thus,
to apply this model to a real processing condition, validation (i.e., comparing predictions
of growth responses from the model to actual measures of growth or survival published in
the scientific literature) should be performed using observed data for various levels of the
environmental factors included within the model domain (Table 2).

Table 2. Dataset used for the model validation of [90] against temperature, pH, and aw conditions
and their respective observed maximum growth rates (µmax, log CFU/h).

T (◦C) pH aw µmax

5 5.2 0.970 0.005
8 5.7 0.970 0.010
10 5.7 0.976 0.030
15 5.9 0.980 0.080
20 6.0 0.990 0.200

In MicroHibro, the user can define validation conditions to assess the closeness of the
observed and predicted values. This can be done visually using the equivalence line graph,
where predictions are equal to observations, and by comparing the effect of temperature on
the µmax. In such a way, the validation indices (e.g., bias and accuracy factors) reported
by Ross et al. [91] are facilitated in MicroHibro. In Figure 1, the model predictions are
relatively close to microbial observations; thus, the model can be used effectively for
assessing Salmonella growth in the pork supply chain.

www.microhibro.com
www.microhibro.com
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Other modelling applications can be used for comparing static and dynamic temper-
ature conditions. As an example, a secondary model for S. enteritidis in egg yolk using a
dynamic (non-isothermal) profile has been developed [92]. The model can predict the effect
of temperature on S. enteritidis growth (10–43 ◦C). Dynamic models can predict the effect
of temperature changes over time. Figure 2 shows the comparison between S. enteritidis
growth in short-term storage (4 h between 15 and 20 ◦C) and static temperature storage
(10 ◦C). Figure 2 shows that S. enteritidis can grow in more than 0.5 log units at dynamic
temperatures, thus increasing the probability of a foodborne outbreak through the ingestion
of contaminated egg yolk samples (assuming that there are not additional treatments for
Salmonella inactivation before consumption).

Through these examples, the use of expert computational systems, such as MicroHibro
software 3.0, is a powerful tool for supporting food safety and quality activities by Health
Authorities and the food industry. This represents a breakthrough in the assessment and
management of food safety based on scientific evidence.
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4. Antimicrobial Resistance
4.1. Salmonella and Antimicrobial Resistance: Preface

Several factors of bacterial chromosomes or plasmids may be the cause of Salmonella
antibiotic resistance [93,94]. These genetic determinants might be in charge of expressing
the intrinsic resistance mechanisms linked to the synthesis of beta-lactam antibiotics, alter-
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ations in the composition of antimicrobials caused by bacterial enzymes, differences in the
permeability of bacteria, the existence of efflux pumps, or changes in target receptors.

The expression of acquired resistance mechanisms, which arise from point mutations in
chromosomal genes (e.g., monophasic strains of S. typhimurium) or the acquisition of mobile
elements like plasmids, transposons, or genomic islands can also result in antimicrobial
resistance (AMR) [94]. Resistance transmission can happen vertically between different
bacteria or horizontally within the same species or genus. Moreover, it can also occur
indirectly through environmental factors [93]. Antimicrobial substances of varying classes,
doses, and exposure frequencies are often administered to the gut microbiota of both people
and animals for the purposes of treatment, prophylaxis, or metaphylaxis. Additionally, the
environment or animal feed sources may contribute to this exposure [95].

A variety of reasons, including improper use of antibiotics in human and veterinary
medicine, unhygienic environments and practices in healthcare settings, and pathogens
that are resistant to treatment spreading via the food chain, can lead to the development
of resistance. Antimicrobials become less effective over time and eventually worthless
as a result of this [96]. The primary selective pressure resulting from antibiotic overuse
and abuse is still thought to be responsible for the appearance, selection, and spread of
microorganisms resistant to antibiotics [97]. Gut bacteria can develop resistance to certain
antibiotic substances, which they can then vertically transfer to Salmonellae sharing the
same ecological niche.

Humans and animals are both impacted by the significant health issue of antibiotic-
resistant strains spreading. AMR is still regarded as a zoonosis and poses a major threat
to public health, despite efforts in recent decades to decrease the use of antibiotics [98].
Regarding this, a significant problem is the occurrence of Multiple Drug Resistance (MDR)
in bacteria, such as Salmonella spp., that cause foodborne illnesses that are common around
the world. In fact, multidrug resistance (MDR) complicates the use of antibiotics to treat
infections and increases the cost of healthcare, lengthens hospital stays, and increases
mortality [98].

One of the main causes of global concern for health authorities has been the in-
crease in cases of gastroenteritis and sepsis linked to Salmonella strains that are becoming
more resistant or even multi-resistant to conventional antimicrobials (e.g., beta-lactams,
aminoglycosides, and quinolones, among others). These strains include mainly the Ty-
phimurium serovar and its monophasic variants (mST) [99–101] as well as S. infantis and
S. kentucky [102]. Consequentially, resistant infections are on the rise, causing therapeutic
failures and longer hospital stays and thus heavily affecting public health and the economy.
With over 90,000 salmonellosis cases reported every year in the EU, the EFSA has estimated
that the overall economic burden of human salmonellosis could be as high as EUR 3 billion
per year (https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/f
actsheetsalmonella.pdf, accessed on 28 June 2023).

When comparing the presence of Salmonella spp. MDR in strains isolated from food
and bacteria obtained from animals, relevant research has shown a statistically significant
difference. These findings tend to suggest that Salmonella strains isolated from food are
the main source of MDR [98], which is of great importance when taking into account the
fundamental role that this pathogen plays in the food industry and the resistance that has
been demonstrated to exist to conventional disinfectants [103]. In light of this, it is crucial
to identify the actual animals and people that are the sources of MDR strains in order to
reduce their prevalence and enhance public health protection [98].

4.2. Key Findings

The annual collection of data on Antimicrobial Resistance (AMR) pertaining to zoonotic
and indicator bacteria from humans, animals, and food sources is a collaborative effort
undertaken by Member States (MSs) and reporting countries. The resultant datasets are
jointly analyzed by the European Food Safety Authority (EFSA) and the European Centre
for Disease Prevention and Control (ECDC) and are published in an annual EU Summary

https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetsalmonella.pdf
https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetsalmonella.pdf
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Report. The most recent report provides an overview of the key findings of the period from
the harmonized AMR monitoring conducted between 2020 and 2021, with a specific focus
on Salmonella spp. in humans and food-producing animals, including broilers, laying hens
and turkeys, fattening pigs, and cattle under 1 year of age along with the associated meat
products [104].

Among the reporting countries, the number of Salmonella spp. in isolates from human
cases varied considerably. Of the 26 reporting countries, including those within the EU
and EAA countries, six countries reported very few (<100) human isolates, while three
countries reported more than 1000 isolates.

In 2021, overall resistance to ampicillin, sulfonamides, and tetracyclines was noticeably
high in Salmonella spp. isolates from humans. Similar resistance patterns were observed in
isolates from food-producing animals and poultry carcasses, except in the case of laying
hens, where resistance levels to these antibiotics were comparatively lower.

Over the period 2013–2021, declining trends in resistance to ampicillin and tetracy-
clines in isolates from humans was observed in 13 and 11 countries, respectively, coinciding
with a decrease in the prevalence of S. typhimurium, a serotype commonly associated with
pigs and calves. From data reported in 2021, the resistance to fluoroquinolones, specifically
ciprofloxacin, was moderate in Salmonella isolates from fattening pigs (10.1%) and cattle
under 1 year of age (calves) (12.7%). In contrast, in 2020, resistance to ciprofloxacin was
noticeably high in isolates recovered from broilers (57.5%), fattening turkeys (65.0%), broiler
carcasses (69.3%), and turkey carcasses (46.9%). In 2021, Salmonella isolates from humans
displayed an average rate of 14.9%, with the lowest levels observed in S. typhimurium
(7.6%) and S. typhimurium monophasic variant (8.9%) and high to extremely high levels in
S. infantis (33.9%) and S. kentucky (78.1%).

It is noteworthy that approximately 95% of isolated S. infantis serovars identified in
the EU were traced back to broilers and their derived products [102]. Recent research has
demonstrated a strong association between the S. infantis serovar and elevated antimicrobial
and multidrug resistance, resistance to disinfectants, increased tolerance to environmental
mercury, heightened virulence, and an enhanced ability to form biofilms and attach to host
cells [102].

In contrast, S. kentucky isolates from human cases demonstrated consistently high
to extremely high resistance levels for ampicillin (62%), ciprofloxacin (77%), tetracycline
(57%), sulfamethoxazole (51%), and gentamicin (27.9%). However, resistance to cefo-
taxime/ceftazidime (6%) and chloramphenicol (12.6%) was observed at low to moderate
levels. Similarly, extremely high resistance to ciprofloxacin was reported in S. kentucky iso-
lates from broilers (78.0%), laying hens (91.9%), fattening turkeys (96.6%), broiler carcasses
(100%), and turkey carcasses (93.3%). In the case of S. enteritidis, the most prevalent serovar
identified in human cases, resistance to quinolones (ciprofloxacin and nalidixic acid) was
22.6% and 24.8%, respectively [4].

Resistance to third-generation cephalosporins remained notably low in isolates from
humans in 2021 (1.1% to ceftazidime and 1.1% to cefotaxime, on average) and was seldom
detected in isolates from animal and carcass origins in 2020–2021, except for calves (2.6%
to cefotaxime and 1.3% to ceftazidime) and broiler flocks (2.1% to cefotaxime and 2.0% to
ceftazidime). Conversely, combined resistance to fluoroquinolones and cephalosporins
was very low in isolates from both humans and animals but exhibited higher prevalence in
certain Salmonella serovars (e.g., S. kentucky and S. infantis) [4].

Among isolates from human cases, S. enteritidis displayed the highest levels of resis-
tance to ciprofloxacin and colistin (22.6% and 17.6%, respectively) when compared to other
serovars (14.9% and 5.1%, respectively). Colistin resistance was similarly pronounced in
certain Salmonella serovars (2020–2021) derived from food-producing animals, particularly
laying hens (55.4%) and broilers (53.1%). In these cases, S. enteritidis was the predominant
serovar [4].

Multidrug resistance was high (22.6%) among Salmonella spp. reported in human
cases in the EU, ranging from low levels among S. enteritidis (1.9%) to very high among S.
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kentucky (54.8%) and extremely high for monophasic S. typhimurium 1,4,[5],12:i:- (78.4%).
Similarly, MDR was observed at moderate to very high levels in Salmonella spp. recovered
from carcasses of food-producing animals such as turkeys and broilers (19.1% and 51.2%,
respectively) and high levels for all food-producing animals checked, including fattening
broilers (41.8%), fattening pigs (39.1%), fattening turkeys (38.2%), and calves (30.4%); the
exception was laying hens, which had low-level MDR (6.3%) [4].

The contributions of selected multi-resistant serovars to overall MDR levels in Salmonella
isolated from animals in 2020–2021 were as follows: broiler carcasses and S. infantis (79.4%),
broilers and S. infantis (73.3%), fattening pigs and Monophasic ST (53.1%), calves and
Monophasic ST (41.7%), laying hens and S. infantis (34.4%), turkey carcasses and Monopha-
sic ST (24.6%), and fattening turkeys and S. infantis (22.1%) [4].

Finally, reporting at the EU level showed that the overall proportion of presumptive
ESBL—or AmpC—producers ranged from very low to low among Salmonella isolates re-
covered from all food-producing animal populations and broiler carcasses. It was also
very low in isolates from human cases, although higher resistance was observed in spe-
cific Salmonella serovars (S. typhimurium and its monophasic variant and S. infantis). No
carbapenemase-producing Salmonella spp. were isolated from human cases in 2021, nor in
animal isolates from 2020 to 2021 [4].

5. Control Strategies in Animal Health

Several environmental and management factors have been associated with high levels
of Salmonella spp. in the animal population. Based on these risk factors, different prevention
and control methods related to hygiene and management, health and biosafety, animal
welfare, and feeding strategies have been proposed [105,106].

5.1. Feeding Strategies

In the case of the poultry and pig industry, the main reservoirs of Salmonella, feeding
strategies aimed at optimizing intestinal functions may have an impact on the colonization
of Salmonella in the digestive tract. Among them, we must highlight the acidification of feed
by means of organic acids, the use of probiotics, prebiotics, or phytobiotics, and the new
lines of research on the incorporation of essential oils (EOs) extracted from plants [107,108].
Most of these products are used in animal health as feed additives, and their approval as
therapeutics requires proven scientific studies that demonstrate their antimicrobial efficacy,
effect on animal production, and safety for public and environmental health.

The efficacy of EOs obtained mainly from oregano, cinnamon, thyme, and citrus fruits
have been evaluated against Salmonella serovars [109–111]. As an example, the effect of EOs
against Salmonella serovars isolated from human outbreaks and river water has recently
been investigated [108]. This research showed that oregano best inhibited the growth of
clinical and environmental Saintpaul, Oranienburg, and Infantis serovars, followed by
thyme and grapefruit EOs. The antimicrobial property of the oregano EO, higher than even
antibiotic ampicillin, may be attributed to the terpenoids thymol and carvacrol. Therefore,
this study concludes that the use of oregano and thyme EOs in conjunction with other
oils or bactericidal agents may enhance their effectiveness against infections caused by
atypical Salmonella. Furthermore, other studies have provided new data on the susceptivity
distribution of Salmonella enterica strains involved in animal and public health to EOs
and a first estimation of the MIC90 and MBC90 (understood as the Minimum Inhibitory
and Bactericidal Concentrations, respectively, able to inhibit or kill 90% of the bacterial
population) [109]. The results supported the bactericidal potential of EOs of oregano,
common thyme, and red thyme against this bacterium and significant differences between
the susceptibility of Typhimurium and Enteritidis serovars. The presence of S. typhimurium
strains with possible multiple essential oil resistance was also demonstrated.

In addition, different authors have continued their research on assessing the combined
effect of these natural substances with traditional antimicrobials (AMBs) as an effective
option to reduce bacterial resistance and administration doses [112,113]. In this sense, the
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synergistic effect between EOs with the main AMBs used against Salmonella (enrofloxacin,
ceftiofur, and trimethoprim-sulfamethoxazole) has been reported, highlighting the higher
percentage of total synergies of trimethoprim-sulfamethoxazole with four EOs (cinnamon,
clove, oregano, and red thyme), the most effective combination being enrofloxacin and
cinnamon EO [107,113]. These results support the need to expand these trials to more
clinical strains and to investigate the mechanisms of action of these synergies.

Based on the above, we believe that the research supports the potential use of EOs
(especially oregano, thyme, and cinnamon), alone or in combination, with traditional AMBs,
as an effective alternative for the control of Salmonella infections of animal or other origin
and as a strategy to reduce the development of new bacterial resistance. In addition, we
conclude that it is necessary to continue the in vitro studies of susceptibility distribution,
the mechanisms that determine the synergy, the in vivo toxicity, and the development of
possible resistance mechanisms.

5.2. Non-Feeding Strategies

In addition to the feeding-based approach, non-feeding alternatives focus on the use
of bacteriophages, vaccines, and the application of biosecurity measures. These strategies
are common in poultry and pigs to minimize Salmonella prevalence in farms [105,106].

5.2.1. Bacteriophages or Phages

Bacteriophages or phages are viruses that infect and replicate in bacteria until they
lyse. They have a capsule and genetic material like eukaryotic viruses. They are natu-
ral bactericides and probably one of the most widely distributed microorganisms in the
biosphere. Despite their potential usefulness in the treatment of infections, the study of
their feasibility has been relegated to the use of antibiotics. In the current context, with the
reduction and/or withdrawal of antibiotics from the medical-veterinary scene, alternatives
such as phages or bacteriophages may be useful for the treatment and control of bacterial
infections such as Salmonella [3].

When it comes to prophylaxis, animal therapy, and reducing the number of bacteria
in animal-based food products, bacteriophages are thought to be a valuable alternative to
antibiotics [114]. Their host-specificity makes them natural, non-toxic, and feasible for ther-
apeutic application, allowing them to attack only the targeted bacteria while safeguarding
the rest of the microbiota. Since the immune system can tolerate phages well, they also
have the advantage of preventing host allergies [105]. Moreover, they are able to combat
resistance to antimicrobial bacteria [115]. Salmonella and other foodborne infections have
been successfully treated in a number of experiments involving germ-free chickens raised
in battery cages [116].

Phage-based methods of controlling Salmonella have been tested in poultry [117–120]
and, to a considerably lesser extent, in pigs [121]. In fact, the environment found in chicken
farms may be a valuable source of Salmonella phages. It has been found that broiler chicken
farms in Spain have more diversified Salmonella bacteriophages than layer ones based on
the most common serovars [118]. However, more research is required to understand the
epidemiology of phages in relation to other serovars.

Furthermore, some researchers have recently investigated the use of microencapsu-
lated bacteriophages incorporated into feed for Salmonella control in poultry [119,120]. In a
first study, in vitro and in vivo gastrointestinal survival of non-encapsulated and microen-
capsulated Salmonella bacteriophages and its implications for bacteriophage therapy in
poultry were reported. Significant differences were observed in the results between the
phage delivery of in vitro studies compared with in vivo studies [119].

A second study showed that adding the L100 encapsulated phage as a feed additive
to the starting diet during rearing could significantly reduce the incidence of flock contami-
nation with S. enteritidis. At the conclusion of the rearing period, this pathogen had been
fully eradicated from the environment, and there was a decrease in Salmonella colonization
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and excretion. Nevertheless, higher phage doses, better delivery protocols, and/or the
combination of different approaches might be required [120].

Finally, other studies have assessed the effect of bacteriophages against Salmonella
Infantis and Salmonella enteritidis on farm surfaces, evaluating bacteriophage application as
a complementary tool for cleaning and disinfection procedures [117].

5.2.2. Vaccines

Strategies based on vaccination for the control of Salmonella spp. have proven to be a
very effective tool for controlling salmonellosis in species such as poultry. For that reason,
the manufacturing of vaccines for the poultry industry is based on strains of S. enteritidis
and S. typhimurium [122].

On the contrary, in swine there are currently no effective commercial vaccines. The
main problem with medical prophylaxis against Salmonella in swine is that there is no
cross-immunity between the different serovars (e.g., Typhimurium, Rissen, Derby, Anatum,
Bredeney, etc.); therefore, it would be necessary to use specific vaccines (autologous or
autovaccines) against the serotype involved in the infection/disease on the farm or to
design vaccine candidates that included the predominant serotypes in the geographical
area and/or farms involved [3].

The different types of vaccines available on the market are live-attenuated, inactivated,
and subunit vaccines [123]. The protection conferred by live vaccines is theoretically
greater since they promote a cellular-based response, which a priori is ideal for facultative
intracellular pathogens such as Salmonella. In addition, if they are administered orally,
they will manage to produce immunoglobulin-A in the intestine, the main component of
the immune system in the control of digestive pathogens. However, these vaccines have
certain disadvantages, such as the need to withdraw any antibiotic treatment during oral
administration of the vaccine, their cost, and the potential risk of reversion to virulence and
biosafety [3]. In fact, secondary mutations in live vaccines can cause reversion to virulence,
which affects the overall health of flocks and thus contaminates the environment [124].
To conclude, it is important to note that a vaccine should be safe, give protection against
various serovars, and stimulate the host’s immunity system.

Finally, the application of vaccines can have negative effects, such as the development
of antibodies (because of vaccination) that interfere with or mask the antibodies developed
by the infection. This becomes a problem in countries with a control program based on
serological analysis, since the techniques used do not allow for the differentiation of vaccine
antibodies from those produced by the infection. There are alternatives to this, such as
ELISA techniques that make it possible to differentiate vaccine antibodies from antibodies
produced by natural infection (DIVA strategy, Differentiating Infected from Vaccinated);
however, these entail additional costs in the surveillance and control of Salmonella [3].

5.2.3. Biosecurity

Biosecurity is the most effective and inexpensive disease control measure, aimed at man-
aging the risks posed by diseases to the economy, environment, and human health [125]. The
application of biosecurity measures to reduce the levels of prevalence of infections/diseases,
with special attention to those that pose a risk to public health (e.g., salmonellosis), should
be one of the main objectives of health authorities [126].

The application of strict hygiene and biosecurity measures not only improves the
situation of farms with respect to specific pathogens but also improves the overall health
of farms. In the specific case of Salmonella spp., in intensively reared white pigs and in
intensive poultry farming, numerous biosafety protocols and practical guides have been
described both at the farm and slaughterhouse level. The most critical points are related to
cleaning and disinfection protocols [3].
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Salmonella Cleaning and Disinfection Protocols

The objective of sanitation is to clean and disinfect equipment and materials that enter
or remain on farms, including the personal hygiene of farm staff. Following the sanitation
program guidelines helps to exclude the presence of pathogens on the farms before they
can be spread [126]. As an example, the efficacy of disinfectant misting in the lairage
of a pig abattoir to reduce Salmonella in pigs prior to slaughter has been reported [127].
This comprises the following: (1) application of high-pressure water to remove organic
matter; (2) use of detergent with rinse (e.g., sodium hydroxide or hypochlorite); (3) use of
disinfectant without rinsing (e.g., chlorocresol or quaternary ammonium); (4) drying for at
least 24–48 h; and (5) fumigation based on cypermethrin.

Other Aspects Related to Biosecurity

In this sense, it is necessary to highlight the correct control of rodents on the farm as a
basic topic within the Salmonella control program. Rodents can carry not only Salmonella
but also a host of microorganisms: Campylobacter spp., Lawsonia intracellularis, Leptospira
spp., Brucella spp., Triquinella spiralis, and porcine reproductive and respiratory syndrome
(PRRS) virus [126].

The control of rodents must be based on good knowledge of their ethology, to locate
the refuge points, breeding nests, and passage areas on the farm and to effectively use baits
with authorized rodenticide products. All the actions carried out in the rat extermination
program must be registered. Likewise, evaluation and verification of the program should
be carried out periodically to make modifications if a reduction in the effectiveness of
the strategy followed or product used is detected. Finally, it is necessary to indicate that
rodenticides must be replaced periodically to avoid tolerances [126].

Wild birds can also act as authentic amplifying reservoirs of different Salmonella
serotypes. The implication of different Salmonella serovars transmitted through birds
(e.g., pigeons, turtledoves) acting as the main vectors in disease outbreaks in farms has
been reported [16]. Therefore, in livestock farms it is necessary to use anti-bird mesh on
windows and access points as well as other preventive biosecurity measures such as closed
warehouse doors, permanently closed silo lids, closed feed, and raw material stores, to
prevent the access of birds [3].

6. Conclusions

Efforts to reduce the transmission of Salmonella through food and other routes must be
implemented using a One Health approach. The control of salmonellosis is based on two
fundamental aspects: the reduction of prevalence levels in animals and the protection of
humans from infection.

At the food chain level, the prevention of salmonellosis requires a comprehensive
approach at farm, manufacturing, distribution, and consumer levels. Food operators and
health authorities play a crucial role in preventing Salmonella transmission to consumers by
ensuring safe food handling, monitoring and enforcing hygiene standards, and swiftly re-
sponding to foodborne outbreaks. Their collaboration safeguards public health and reduces
the risk of foodborne illness, underscoring the importance of their roles in safeguarding
food safety.

A significant concern is the rise of Salmonella MDR strains, which are responsible for
foodborne illnesses that are common throughout the world. In fact, multidrug resistance
(MDR) complicates the use of antibiotics to treat infections, raises healthcare expenses,
lengthens hospital stays, and increases mortality.

Finally, several environmental and management factors have been associated with
high levels of Salmonella spp. in the animal population. Based on these risk factors, different
prevention and control methods related to hygiene and management, health and biosafety,
animal welfare, and feeding strategies have been proposed.
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