Assignment 5

(Rotational Motion)

Exercise 1

An oxygen molecule consists of two oxygen atoms whose total mass is $5.3 \times 10^{-26} \mathrm{~kg}$ and whose moment of inertia about an axis perpendicular to the line joining the two atoms, midway between them, is $1.9 \times 10^{-46} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. From these data, estimate the effective distance between the atoms.

Exercise 2:

Two blocks are connected by a light string passing over a pulley of radius 0.15 m and moment of inertia I. The blocks move (towards the right) with an acceleration of $1.00 \mathrm{~m} / \mathrm{s}^{2}$ along their frictionless inclines (see Fig).
a) Draw free-body diagrams for each of the two blocks and the pulley.
b) Determine F_{TA} and F_{TB} the tensions in the two parts of the string.
c) Find the net torque acting on the pulley, and determine its moment of inertia, I.

Figure 1

Exercise 4:

a) What is the angular momentum of a figure skater spinning at $2.8 \mathrm{rev} / \mathrm{s}(1 \mathrm{rev}=2 \cdot \pi \mathrm{rad})$ with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5 m , a radius of 15 cm , and a mass of 48 kg ?
b) How much torque is required to slow her to a stop in 5.0 s , assuming she does not move her arms?

